You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

convolution.cpp 21 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653
  1. /**
  2. * \file dnn/test/common/convolution.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "test/common/checker.h"
  12. #include "test/common/convolution.h"
  13. #include <unordered_set>
  14. #include <sstream>
  15. using namespace megdnn;
  16. using namespace test;
  17. using namespace convolution;
  18. std::vector<TestArg> convolution::get_1x1_args() {
  19. std::vector<TestArg> args;
  20. param::Convolution param;
  21. param.mode = param::Convolution::Mode::CROSS_CORRELATION;
  22. // clang-format off
  23. for (size_t batch_size: {1, 8})
  24. for (size_t ic: {1, 16})
  25. for (size_t oc: {1, 16})
  26. for (size_t ih : {8, 32}) {
  27. size_t iw = ih;
  28. args.emplace_back(param, TensorShape{batch_size, ic, ih, iw},
  29. TensorShape{oc, ic, 1, 1});
  30. }
  31. // clang-format on
  32. return args;
  33. }
  34. std::vector<TestArg> convolution::get_args_common() {
  35. std::vector<TestArg> args;
  36. for (size_t i = 16; i < 24; ++i) {
  37. param::Convolution param;
  38. param.mode = param::Convolution::Mode::CONVOLUTION;
  39. args.emplace_back(param,
  40. TensorShape{5, 2, i, i+1},
  41. TensorShape{3, 2, 3, 4});
  42. param.mode = param::Convolution::Mode::CROSS_CORRELATION;
  43. args.emplace_back(param,
  44. TensorShape{5, 2, i, i+1},
  45. TensorShape{3, 2, 3, 4});
  46. }
  47. return args;
  48. }
  49. std::vector<TestArg> convolution::get_args_padding() {
  50. std::vector<TestArg> args;
  51. for (size_t i = 16; i < 24; ++i) {
  52. param::Convolution param;
  53. param.pad_h = 1;
  54. param.pad_w = 2;
  55. param.mode = param::Convolution::Mode::CONVOLUTION;
  56. args.emplace_back(param,
  57. TensorShape{5, 2, i, i+1},
  58. TensorShape{3, 2, 3, 4});
  59. param.mode = param::Convolution::Mode::CROSS_CORRELATION;
  60. args.emplace_back(param,
  61. TensorShape{5, 2, i, i+1},
  62. TensorShape{3, 2, 3, 4});
  63. }
  64. return args;
  65. }
  66. std::vector<TestArg> convolution::get_args_large_channel() {
  67. std::vector<TestArg> args;
  68. for (size_t i = 16; i < 24; ++i) {
  69. param::Convolution param;
  70. param.mode = param::Convolution::Mode::CONVOLUTION;
  71. args.emplace_back(param,
  72. TensorShape{2, 20, i, i+1},
  73. TensorShape{30, 20, 3, 4});
  74. param.mode = param::Convolution::Mode::CROSS_CORRELATION;
  75. args.emplace_back(param,
  76. TensorShape{2, 20, i, i+1},
  77. TensorShape{30, 20, 3, 4});
  78. }
  79. for (size_t i = 16; i < 24; ++i) {
  80. param::Convolution param;
  81. param.pad_h = 1;
  82. param.pad_w = 2;
  83. param.mode = param::Convolution::Mode::CONVOLUTION;
  84. args.emplace_back(param,
  85. TensorShape{2, 20, i, i+1},
  86. TensorShape{30, 20, 3, 4});
  87. param.mode = param::Convolution::Mode::CROSS_CORRELATION;
  88. args.emplace_back(param,
  89. TensorShape{2, 20, i, i+1},
  90. TensorShape{30, 20, 3, 4});
  91. }
  92. return args;
  93. }
  94. std::vector<TestArg> convolution::get_args_1x1() {
  95. std::vector<TestArg> args;
  96. for (size_t i = 16; i < 24; ++i) {
  97. param::Convolution param;
  98. param.mode = param::Convolution::Mode::CONVOLUTION;
  99. args.emplace_back(param,
  100. TensorShape{2, 20, i, i+1},
  101. TensorShape{30, 20, 1, 1});
  102. param.mode = param::Convolution::Mode::CROSS_CORRELATION;
  103. args.emplace_back(param,
  104. TensorShape{2, 20, i, i+1},
  105. TensorShape{30, 20, 1, 1});
  106. }
  107. return args;
  108. }
  109. std::vector<TestArg> convolution::get_args_large_filter() {
  110. std::vector<TestArg> args;
  111. for (size_t i = 16; i < 24; ++i) {
  112. param::Convolution param;
  113. param.mode = param::Convolution::Mode::CONVOLUTION;
  114. args.emplace_back(param,
  115. TensorShape{2, 2, i, i+1},
  116. TensorShape{3, 2, 7, 8});
  117. param.mode = param::Convolution::Mode::CROSS_CORRELATION;
  118. args.emplace_back(param,
  119. TensorShape{2, 2, i, i+1},
  120. TensorShape{3, 2, 7, 8});
  121. }
  122. return args;
  123. }
  124. std::vector<TestArg> convolution::get_args_exhaustive_search() {
  125. std::vector<TestArg> args;
  126. // clang-format off
  127. for (size_t n: {1, 2})
  128. for (size_t ih: {11, 13})
  129. for (size_t iw: {ih+1})
  130. for (size_t ic: {3})
  131. for (size_t oc: {4})
  132. for (size_t fh: {3, 6})
  133. for (size_t fw: {fh+1})
  134. for (size_t ph: {0, 1})
  135. for (size_t sh: {1, 2})
  136. for (bool xcorr : {false, true}) {
  137. param::Convolution param;
  138. param.mode = xcorr ? param::Convolution::Mode::CROSS_CORRELATION
  139. : param::Convolution::Mode::CONVOLUTION;
  140. param.stride_h = param.stride_w = sh;
  141. param.pad_h = param.pad_w = ph;
  142. args.emplace_back(param, TensorShape{n, ic, ih, iw},
  143. TensorShape{oc, ic, fh, fw});
  144. }
  145. // clang-format on
  146. return args;
  147. }
  148. std::vector<TestArg> convolution::get_args_4x4() {
  149. std::vector<TestArg> args;
  150. for (size_t oh = 1; oh < 20; ++oh) {
  151. param::Convolution param;
  152. param.mode = param::Convolution::Mode::CROSS_CORRELATION;
  153. args.emplace_back(param,
  154. TensorShape{4, 3, oh+3, oh+4},
  155. TensorShape{2, 3, 4, 4});
  156. }
  157. return args;
  158. }
  159. std::vector<TestArg> convolution::get_args_large_channels() {
  160. std::vector<TestArg> args;
  161. // clang-format off
  162. for (size_t n: {2})
  163. for (size_t ih: {13})
  164. for (size_t iw: {ih+1})
  165. for (size_t ic: {32})
  166. for (size_t oc: {32})
  167. for (size_t fh: {3, 6})
  168. for (size_t fw: {fh+1})
  169. for (size_t ph: {0, 1})
  170. for (size_t sh: {1, 2})
  171. for (bool xcorr : {false, true}) {
  172. param::Convolution param;
  173. param.mode = xcorr ? param::Convolution::Mode::CROSS_CORRELATION
  174. : param::Convolution::Mode::CONVOLUTION;
  175. param.stride_h = param.stride_w = sh;
  176. param.pad_h = param.pad_w = ph;
  177. args.emplace_back(param, TensorShape{n, ic, ih, iw},
  178. TensorShape{oc, ic, fh, fw});
  179. }
  180. // clang-format on
  181. return args;
  182. }
  183. std::vector<TestArg> convolution::get_args_x86_direct_case_2() {
  184. std::vector<TestArg> args;
  185. // clang-format off
  186. for (size_t stride: {1, 2})
  187. for (size_t ker_size : {3, 5, 7, 9}) {
  188. param::Convolution param;
  189. param.mode = param::Convolution::Mode::CROSS_CORRELATION;
  190. param.stride_h = param.stride_w = stride;
  191. param.pad_h = param.pad_w = ker_size / 2;
  192. args.emplace_back(param, TensorShape{2, 2, 100, 99},
  193. TensorShape{3, 2, ker_size, ker_size});
  194. args.emplace_back(param, TensorShape{2, 2, 100, 99},
  195. TensorShape{1, 2, ker_size, ker_size});
  196. }
  197. // clang-format on
  198. return args;
  199. }
  200. std::vector<TestArg> convolution::get_args_fallback_templated_impl() {
  201. std::vector<TestArg> args;
  202. // clang-format off
  203. for (size_t sh: {1, 2})
  204. for (size_t sw: {1, 2})
  205. for (size_t ph: {0, 1, 2})
  206. for (size_t pw: {0, 1, 2})
  207. for (size_t ker_size: {3, 4, 5, 7})
  208. for (bool xcorr : {false, true}) {
  209. param::Convolution param;
  210. param.mode = xcorr ? param::Convolution::Mode::CROSS_CORRELATION
  211. : param::Convolution::Mode::CONVOLUTION;
  212. param.stride_h = sh;
  213. param.stride_w = sw;
  214. param.pad_h = ph;
  215. param.pad_w = pw;
  216. args.emplace_back(param, TensorShape{2, 2, 50, 55},
  217. TensorShape{3, 2, ker_size, ker_size});
  218. args.emplace_back(param, TensorShape{2, 2, 50, 55},
  219. TensorShape{1, 2, ker_size, ker_size});
  220. }
  221. // clang-format on
  222. return args;
  223. }
  224. std::vector<TestArg> convolution::get_args_fallback_non_templated_impl() {
  225. std::vector<TestArg> args;
  226. // clang-format off
  227. for (size_t sh: {1, 2})
  228. for (size_t sw: {1, 2})
  229. for (size_t ph: {0, 1, 2})
  230. for (size_t pw: {0, 1, 2})
  231. for (size_t ker_size: {3, 4, 5, 7})
  232. for (bool xcorr : {false, true}) {
  233. param::Convolution param;
  234. param.mode = xcorr ? param::Convolution::Mode::CROSS_CORRELATION
  235. : param::Convolution::Mode::CONVOLUTION;
  236. param.stride_h = sh;
  237. param.stride_w = sw;
  238. param.pad_h = ph;
  239. param.pad_w = pw;
  240. args.emplace_back(param, TensorShape{2, 2, 10, 55},
  241. TensorShape{3, 2, ker_size, ker_size + 1});
  242. args.emplace_back(param, TensorShape{2, 2, 10, 55},
  243. TensorShape{1, 2, ker_size, ker_size + 1});
  244. }
  245. // clang-format on
  246. return args;
  247. }
  248. std::vector<TestArg> convolution::get_args_cudnn_5_1_failures() {
  249. std::vector<TestArg> args;
  250. args.emplace_back(
  251. param::Convolution{
  252. param::Convolution::Mode::CROSS_CORRELATION, 0, 4, 1, 2},
  253. TensorShape{5, 3, 25, 20},
  254. TensorShape{10, 3, 7, 4}
  255. );
  256. return args;
  257. }
  258. std::vector<TestArg> convolution::get_args_x86_winograd_algorithm() {
  259. std::vector<TestArg> args;
  260. for (size_t ic_size: {8, 16})
  261. {
  262. param::Convolution param;
  263. param.mode = param::Convolution::Mode::CROSS_CORRELATION;
  264. param.stride_h = param.stride_w = 1;
  265. param.pad_h = param.pad_w = 0;
  266. args.emplace_back(param,
  267. TensorShape{2, ic_size, 102, 102},
  268. TensorShape{8, ic_size, 3, 3});
  269. }
  270. return args;
  271. }
  272. std::vector<TestArg> convolution::get_args_BRAIN_481() {
  273. std::vector<TestArg> args;
  274. {
  275. param::Convolution param{param::Convolution::Mode::CROSS_CORRELATION,
  276. 0, 1, 1, 2};
  277. args.emplace_back(param,
  278. TensorShape{4, 4, 14, 13},
  279. TensorShape{3, 4, 8, 13});
  280. for (size_t margin = 0; margin < 5; ++margin)
  281. {
  282. param::Convolution param{param::Convolution::Mode::CROSS_CORRELATION,
  283. 1, 1, 2, 2};
  284. args.emplace_back(param,
  285. TensorShape{4, 4, 14, 13},
  286. TensorShape{3, 4, 16-margin, 15-margin});
  287. }
  288. }
  289. return args;
  290. }
  291. std::vector<TestArg> convolution::get_args() {
  292. std::vector<TestArg> all_args, args;
  293. #define ADD_ARGS(NAME) \
  294. args = get_args_##NAME(); \
  295. all_args.insert(all_args.end(), args.begin(), args.end());
  296. ADD_ARGS(common)
  297. ADD_ARGS(padding)
  298. ADD_ARGS(large_channel)
  299. ADD_ARGS(1x1)
  300. ADD_ARGS(large_filter)
  301. ADD_ARGS(exhaustive_search)
  302. ADD_ARGS(4x4)
  303. ADD_ARGS(large_channels)
  304. ADD_ARGS(x86_direct_case_2)
  305. ADD_ARGS(fallback_templated_impl)
  306. ADD_ARGS(fallback_non_templated_impl)
  307. ADD_ARGS(cudnn_5_1_failures)
  308. ADD_ARGS(x86_winograd_algorithm)
  309. ADD_ARGS(BRAIN_481)
  310. #undef ADD_ARGS
  311. return all_args;
  312. }
  313. std::vector<TestArg> convolution::get_args_cuda_conv_bwd_data() {
  314. std::vector<TestArg> all_args, args;
  315. #define ADD_ARGS(NAME) \
  316. args = get_args_##NAME(); \
  317. all_args.insert(all_args.end(), args.begin(), args.end());
  318. ADD_ARGS(common)
  319. ADD_ARGS(padding)
  320. ADD_ARGS(large_channel)
  321. ADD_ARGS(1x1)
  322. ADD_ARGS(large_filter)
  323. ADD_ARGS(exhaustive_search)
  324. ADD_ARGS(4x4)
  325. ADD_ARGS(large_channels)
  326. ADD_ARGS(x86_direct_case_2)
  327. ADD_ARGS(fallback_templated_impl)
  328. ADD_ARGS(fallback_non_templated_impl)
  329. ADD_ARGS(x86_winograd_algorithm)
  330. #undef ADD_ARGS
  331. return all_args;
  332. }
  333. std::vector<TestArg> convolution::get_args_cudnn_7_5_failures() {
  334. std::vector<TestArg> all_args, args;
  335. #define ADD_ARGS(NAME) \
  336. args = get_args_##NAME(); \
  337. all_args.insert(all_args.end(), args.begin(), args.end());
  338. ADD_ARGS(cudnn_5_1_failures)
  339. ADD_ARGS(BRAIN_481)
  340. #undef ADD_ARGS
  341. return all_args;
  342. }
  343. std::vector<TestArg> convolution::get_chanwise_args() {
  344. std::vector<TestArg> args;
  345. // clang-format off
  346. for (size_t n: {2})
  347. for (size_t ih: {13})
  348. for (size_t iw: {ih+1})
  349. for (size_t c: {4, 36, 128, 320})
  350. for (size_t fh: {3, 5})
  351. for (size_t fw: {fh+1})
  352. for (size_t ph: {0, 1})
  353. for (size_t sh: {1, 2})
  354. for (size_t dh : {1, 2}) {
  355. param::Convolution param;
  356. param.sparse = param::Convolution::Sparse::GROUP;
  357. param.stride_h = param.stride_w = sh;
  358. param.pad_h = param.pad_w = ph;
  359. param.dilate_h = param.dilate_w = dh;
  360. args.emplace_back(param, TensorShape{n, c, ih, iw},
  361. TensorShape{c, 1, 1, fh, fw});
  362. }
  363. // clang-format on
  364. return args;
  365. }
  366. std::vector<TestArg> convolution::get_dilated_args() {
  367. std::vector<TestArg> args;
  368. param::Convolution param;
  369. param.pad_h = param.pad_w = 2;
  370. param.dilate_h = param.dilate_w = 2;
  371. size_t n = 1, ic = 15, ih = 128, iw = 128,
  372. fh = 3, fw = 3,
  373. oc = 17;
  374. args.emplace_back(param,
  375. TensorShape{n, ic, ih, iw},
  376. TensorShape{oc, ic, fh, fw});
  377. // exhaustive search
  378. // clang-format off
  379. for (size_t n: {2})
  380. for (size_t ih: {23})
  381. for (size_t iw: {ih+1})
  382. for (size_t ic: {3})
  383. for (size_t oc: {4})
  384. for (size_t fh: {3, 6})
  385. for (size_t fw: {fh+1})
  386. for (size_t ph: {0, 1})
  387. for (size_t sh: {2})
  388. for (size_t dh : {3}) {
  389. param::Convolution param;
  390. param.stride_h = param.stride_w = sh;
  391. param.pad_h = param.pad_w = ph;
  392. param.dilate_h = dh;
  393. param.dilate_w = 3;
  394. args.emplace_back(param, TensorShape{n, ic, ih, iw},
  395. TensorShape{oc, ic, fh, fw});
  396. }
  397. // clang-format on
  398. return args;
  399. }
  400. void convolution::test_conv_config_combinations(int k_size,
  401. Handle* handle, bool test_int8,
  402. bool test_backward,
  403. bool is_cuda,
  404. ConvEPSGetter eps_getter,
  405. bool use_io16xc32) {
  406. Checker<Convolution> checker(handle);
  407. std::unique_ptr<Checker<ConvolutionBackwardData>> checker_bwd_data_ptr;
  408. std::unique_ptr<Checker<ConvolutionBackwardFilter>> checker_bwd_filter_ptr;
  409. if (test_backward) {
  410. checker_bwd_data_ptr.reset(new std::remove_reference<
  411. decltype(*checker_bwd_data_ptr)>::type(handle));
  412. checker_bwd_filter_ptr.reset(new std::remove_reference<
  413. decltype(*checker_bwd_filter_ptr)>::type(handle));
  414. }
  415. auto &&checker_bwd_data = *checker_bwd_data_ptr;
  416. auto &&checker_bwd_filter = *checker_bwd_filter_ptr;
  417. #define CONF_BOOL(var) for (int var: {0, 1})
  418. std::unordered_set<Convolution::Algorithm*> used_algos;
  419. std::unordered_set<ConvolutionBackwardData::Algorithm*> used_algos_bwd_data;
  420. std::unordered_set<ConvolutionBackwardFilter::Algorithm*>
  421. used_algos_bwd_flt;
  422. using Param = Convolution::Param;
  423. CONF_BOOL(conv)
  424. CONF_BOOL(padding)
  425. CONF_BOOL(stride)
  426. CONF_BOOL(group)
  427. CONF_BOOL(non_square)
  428. CONF_BOOL(dilation)
  429. CONF_BOOL(format)
  430. // dtype: 0: f32; 1: f16; 2: i8x8x16 3: i8x8x32
  431. for (int dtype = 0; dtype < (test_int8 ? 4 : 2); ++ dtype)
  432. for (int ksize: {1, k_size}) {
  433. // When is_cuda is on, test cases where format is NHWC and
  434. // data type is not INT8x8x32 are disabled.
  435. if (is_cuda) {
  436. if (format && dtype != 3) continue;
  437. }
  438. auto config2str = [&]() -> std::string {
  439. std::ostringstream ostr;
  440. ostr << conv << padding << stride << group << non_square << dilation
  441. << format << dtype << ksize;
  442. return ostr.str();
  443. };
  444. auto errmsg = [&](const char *name) {
  445. std::string ret;
  446. ret += "checker failed for algorithm ";
  447. ret += name;
  448. ret += " with conv,padding,stride,group,non_square,dilation,format,"
  449. "dtype,ksize=";
  450. ret += config2str();
  451. return ret;
  452. };
  453. MEGDNN_MARK_USED_VAR(errmsg);
  454. Param param;
  455. param.mode = conv ? Param::Mode::CONVOLUTION :
  456. Param::Mode::CROSS_CORRELATION;
  457. param.format = format ? Param::Format::NHWC : Param::Format::NCHW;
  458. if (dtype == 1 && use_io16xc32) {
  459. param.compute_mode = Param::ComputeMode::FLOAT32;
  460. }
  461. size_t IC = 6, OC = 9, G = 3, FH = ksize, FW = ksize;
  462. TensorShape ishp = format ?
  463. TensorShape{2, 18, 18, IC} : TensorShape{2, IC, 18, 18},
  464. fshp;
  465. if (padding) {
  466. param.pad_h = 2 + non_square;
  467. param.pad_w = 2 - non_square;
  468. }
  469. if (non_square) {
  470. if (FH > 2)
  471. FH -= 2;
  472. FW += 1;
  473. ++ ishp[format ? 2 : 3] ;
  474. }
  475. if (group) {
  476. fshp = format ?
  477. TensorShape{G, OC / G, FH, FW, IC / G} :
  478. TensorShape{G, OC / G, IC / G, FH, FW};
  479. param.sparse = Param::Sparse::GROUP;
  480. } else {
  481. fshp = format ?
  482. TensorShape{OC, FH, FW, IC} :
  483. TensorShape{OC, IC, FH, FW};
  484. }
  485. if (dilation) {
  486. param.dilate_h = 2 - non_square;
  487. param.dilate_w = 2 + non_square;
  488. }
  489. if (stride) {
  490. param.stride_h = 2 + non_square;
  491. param.stride_w = 2 - non_square;
  492. }
  493. DType inp_type, out_type;
  494. if (dtype == 2) {
  495. inp_type = dtype::Int8();
  496. out_type = dtype::Int16();
  497. } else if (dtype == 3) {
  498. inp_type = dtype::Int8();
  499. out_type = dtype::Int32();
  500. } else {
  501. if (!dtype)
  502. inp_type = dtype::Float32();
  503. else
  504. inp_type = dtype::Float16();
  505. out_type = inp_type;
  506. }
  507. checker
  508. .set_dtype(0, inp_type)
  509. .set_dtype(1, inp_type)
  510. .set_dtype(2, out_type)
  511. .set_param(param);
  512. auto opr = checker.opr();
  513. opr->param() = param;
  514. TensorLayout ily{ishp, inp_type}, fly{fshp, inp_type}, oly;
  515. oly.dtype = out_type;
  516. opr->deduce_layout(ily, fly, oly);
  517. int channel_start = 1;
  518. if (format) channel_start = 3;
  519. float scale = 1.0f / sqrt(fshp[channel_start] * FH * FW);
  520. UniformFloatRNG rng(scale, 2 * scale);
  521. checker.set_rng(0, &rng).set_rng(1, &rng);
  522. for (auto algo : opr->get_all_algorithms(ily, fly, oly)) {
  523. used_algos.insert(algo);
  524. opr->execution_policy().algorithm = algo;
  525. checker
  526. .set_epsilon(eps_getter(dtype == 1, 0, algo->name()))
  527. .execs({ishp, fshp, {}});
  528. opr->execution_policy().algorithm = nullptr;
  529. ASSERT_TRUE(checker.prev_succ()) << errmsg(algo->name());
  530. }
  531. if (test_backward) {
  532. // backward data
  533. checker_bwd_data.set_dtype(0, inp_type)
  534. .set_dtype(1, out_type)
  535. .set_dtype(2, inp_type)
  536. .set_param(param);
  537. auto opr = checker_bwd_data.opr();
  538. opr->param() = param;
  539. for (auto algo: opr->get_all_algorithms(fly, oly, ily)) {
  540. used_algos_bwd_data.insert(algo);
  541. opr->execution_policy().algorithm = algo;
  542. checker_bwd_data
  543. .set_epsilon(eps_getter(dtype == 1, 1, algo->name()))
  544. .execl({fly, oly, ily});
  545. opr->execution_policy().algorithm = nullptr;
  546. ASSERT_TRUE(checker_bwd_data.prev_succ()) <<
  547. errmsg(algo->name());
  548. }
  549. }
  550. if (test_backward) {
  551. // backward filter
  552. checker_bwd_filter
  553. .set_dtype(0, inp_type)
  554. .set_dtype(1, out_type)
  555. .set_dtype(2, inp_type)
  556. .set_param(param);
  557. auto opr = checker_bwd_filter.opr();
  558. opr->param() = param;
  559. for (auto algo: opr->get_all_algorithms(ily, oly, fly)) {
  560. used_algos_bwd_flt.insert(algo);
  561. opr->execution_policy().algorithm = algo;
  562. checker_bwd_filter
  563. .set_epsilon(eps_getter(dtype == 1, 2, algo->name()))
  564. .execl({ily, oly, fly});
  565. opr->execution_policy().algorithm = nullptr;
  566. ASSERT_TRUE(checker_bwd_filter.prev_succ()) <<
  567. errmsg(algo->name());
  568. }
  569. }
  570. //printf("%s\r", config2str().c_str());
  571. //fflush(stdout);
  572. }
  573. //printf("tested algos: fwd:{");
  574. //for (auto i: used_algos) {
  575. // printf(" %s", i->name());
  576. //}
  577. //if (test_backward) {
  578. // printf("} bwd_data:{");
  579. // for (auto i: used_algos_bwd_data) {
  580. // printf(" %s", i->name());
  581. // }
  582. // printf("} bwd_filter:{");
  583. // for (auto i: used_algos_bwd_flt) {
  584. // printf(" %s", i->name());
  585. // }
  586. //}
  587. //printf("} \n");
  588. }
  589. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台