You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

rng.h 7.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268
  1. /**
  2. * \file dnn/test/common/rng.h
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #pragma once
  12. #include "megdnn/dtype.h"
  13. #include "test/common/utils.h"
  14. #include "test/common/random_state.h"
  15. #include <random>
  16. #include <set>
  17. namespace megdnn {
  18. namespace test {
  19. #if __cplusplus >= 201703L
  20. #define COMPAT_RANDOM(begin, end) \
  21. { \
  22. std::default_random_engine rng_engine; \
  23. std::shuffle(begin, end, rng_engine); \
  24. }
  25. #else
  26. #define COMPAT_RANDOM(begin, end) std::random_shuffle(begin, end);
  27. #endif
  28. class RNG {
  29. protected:
  30. class RNGxorshf;
  31. public:
  32. virtual void gen(const TensorND& tensor) = 0;
  33. virtual ~RNG() = default;
  34. };
  35. class Float16PeriodicalRNG : public RNG {
  36. public:
  37. Float16PeriodicalRNG();
  38. Float16PeriodicalRNG(size_t range);
  39. void gen(const TensorND& tensor) override;
  40. dt_float16 get_single_val();
  41. private:
  42. void gen_all_valid_float16();
  43. size_t m_offset;
  44. std::vector<dt_float16> m_sequence;
  45. };
  46. class BFloat16PeriodicalRNG : public RNG {
  47. public:
  48. BFloat16PeriodicalRNG() {
  49. size_t bits = sizeof(dt_bfloat16) * 8;
  50. size_t mantissa_bits = std::numeric_limits<dt_bfloat16>::digits - 1;
  51. size_t exponent_bits = bits - mantissa_bits - 1;
  52. for (size_t exp = 1u << (exponent_bits - 2);
  53. exp < (1u << exponent_bits) - (1u << (exponent_bits - 2)); ++exp) {
  54. for (size_t x = 0; x < 1u << mantissa_bits; ++x) {
  55. size_t pos_num = (exp << mantissa_bits) + x;
  56. size_t neg_num =
  57. (1u << (bits - 1)) + (exp << mantissa_bits) + x;
  58. union U {
  59. U() {}
  60. uint16_t i;
  61. dt_bfloat16 f;
  62. } i2f;
  63. i2f.i = static_cast<uint16_t>(pos_num);
  64. m_sequence.push_back(i2f.f);
  65. i2f.i = static_cast<uint16_t>(neg_num);
  66. m_sequence.push_back(i2f.f);
  67. }
  68. }
  69. std::shuffle(m_sequence.begin(), m_sequence.end(),
  70. RandomState::generator());
  71. }
  72. void gen(const TensorND& tensor) override {
  73. megdnn_assert(tensor.layout.dtype.enumv() == DTypeTrait<dt_bfloat16>::enumv);
  74. size_t nr_elems = tensor.layout.span().dist_elem();
  75. auto offset = tensor.layout.span().low_elem;
  76. for (size_t i = 0; i < nr_elems; ++i) {
  77. tensor.ptr<dt_bfloat16>()[offset + i] = get_single_val();
  78. }
  79. }
  80. dt_bfloat16 get_single_val() {
  81. if (m_offset >= m_sequence.size()) {
  82. m_offset = 0;
  83. }
  84. return m_sequence[m_offset++];
  85. }
  86. private:
  87. size_t m_offset = 0;
  88. std::vector<dt_bfloat16> m_sequence;
  89. };
  90. class IIDRNG : public RNG {
  91. public:
  92. void gen(const TensorND& tensor) override;
  93. virtual dt_float32 gen_single_val() = 0;
  94. virtual bool output_is_float() { return true; }
  95. protected:
  96. virtual bool has_fast_float32();
  97. virtual void fill_fast_float32(dt_float32* dest, size_t size);
  98. };
  99. class NormalRNG final : public IIDRNG {
  100. public:
  101. NormalRNG(dt_float32 mean = 0.0f, dt_float32 stddev = 1.0f)
  102. : m_dist(mean, stddev) {}
  103. void fill_fast_float32(dt_float32* dest, size_t size) override;
  104. protected:
  105. dt_float32 gen_single_val() override;
  106. private:
  107. std::normal_distribution<dt_float32> m_dist;
  108. bool has_fast_float32() override;
  109. };
  110. class ConstValue final : public IIDRNG {
  111. public:
  112. ConstValue(dt_float32 value = 0.0f) : value_(value) {}
  113. void fill_fast_float32(dt_float32* dest, size_t size) override;
  114. protected:
  115. dt_float32 gen_single_val() override { return value_; }
  116. private:
  117. dt_float32 value_;
  118. bool has_fast_float32() override { return true; }
  119. };
  120. class UniformIntRNG : public IIDRNG {
  121. public:
  122. UniformIntRNG(dt_int32 a, dt_int32 b) : m_dist(a, b) {}
  123. dt_float32 gen_single_val() override;
  124. bool output_is_float() override { return false; }
  125. protected:
  126. std::uniform_int_distribution<dt_int32> m_dist;
  127. };
  128. //! range must be positive; each value would be negated with prob 0.5
  129. class UniformIntNonZeroRNG : public UniformIntRNG {
  130. std::uniform_int_distribution<dt_int32> m_dist_flip{0, 1};
  131. public:
  132. UniformIntNonZeroRNG(int a, int b) : UniformIntRNG(a, b) {
  133. megdnn_assert(a > 0 && b > a);
  134. }
  135. dt_float32 gen_single_val() override;
  136. };
  137. class UniformFloatRNG : public IIDRNG {
  138. public:
  139. UniformFloatRNG(dt_float32 a, dt_float32 b) : m_dist(a, b) {}
  140. dt_float32 gen_single_val() override;
  141. protected:
  142. std::uniform_real_distribution<dt_float32> m_dist;
  143. bool has_fast_float32() override;
  144. void fill_fast_float32(dt_float32* dest, size_t size) override;
  145. };
  146. //! range must be positive; each value would be negated with prob 0.5
  147. class UniformFloatNonZeroRNG : public UniformFloatRNG {
  148. std::uniform_int_distribution<dt_int32> m_dist_flip{0, 1};
  149. public:
  150. UniformFloatNonZeroRNG(float a, float b) : UniformFloatRNG(a, b) {
  151. megdnn_assert(a > 0 && b > a);
  152. }
  153. dt_float32 gen_single_val() override;
  154. void fill_fast_float32(dt_float32* dest, size_t size) override;
  155. };
  156. class UniformFloatWithZeroRNG final : public UniformFloatRNG {
  157. public:
  158. UniformFloatWithZeroRNG(dt_float32 a, dt_float32 b,
  159. float zero_val_proportion)
  160. : UniformFloatRNG(a, b) {
  161. if (zero_val_proportion < 0.f)
  162. zero_val_proportion_ = 0.f;
  163. else if (zero_val_proportion > 1.f)
  164. zero_val_proportion_ = 1.f;
  165. else
  166. zero_val_proportion_ = zero_val_proportion;
  167. }
  168. private:
  169. float zero_val_proportion_;
  170. void fill_fast_float32(dt_float32* dest, size_t size) override;
  171. };
  172. class BernoulliRNG final : public IIDRNG {
  173. public:
  174. BernoulliRNG(dt_float32 probability_);
  175. dt_float32 gen_single_val() override;
  176. private:
  177. dt_float32 m_probability;
  178. std::uniform_real_distribution<dt_float32> m_dist;
  179. };
  180. /**
  181. * \brief RNG without replacement, so that no two values in the tensor are
  182. * equal.
  183. *
  184. * Each value is generated repeatedly by IIDRNG, until the newly-generated value
  185. * differs from any previous value.
  186. */
  187. class NoReplacementRNG final : public RNG {
  188. private:
  189. IIDRNG* m_iid_rng;
  190. public:
  191. NoReplacementRNG(IIDRNG* iid_rng) : m_iid_rng(iid_rng) {}
  192. void gen(const TensorND& tensor) override;
  193. };
  194. //! generate a batch of matrices that are likely to have a small condition num
  195. class InvertibleMatrixRNG final : public RNG {
  196. std::unique_ptr<RNGxorshf> m_rng;
  197. public:
  198. InvertibleMatrixRNG();
  199. ~InvertibleMatrixRNG() noexcept;
  200. void gen(const TensorND& tensor) override;
  201. private:
  202. template <typename ctype>
  203. void do_gen(ctype* ptr, size_t batch, size_t n);
  204. };
  205. //! generate a continuous number of delta, start from value
  206. class ConsecutiveRNG final : public IIDRNG {
  207. public:
  208. ConsecutiveRNG(dt_float32 value = 0.0f, dt_float32 delta = 1.0f)
  209. : value_(value), delta_(delta) {}
  210. void fill_fast_float32(dt_float32* dest, size_t size) override;
  211. protected:
  212. dt_float32 gen_single_val() override {
  213. auto res = value_;
  214. value_ += delta_;
  215. return res;
  216. }
  217. private:
  218. dt_float32 value_, delta_;
  219. bool has_fast_float32() override { return true; }
  220. };
  221. } // namespace test
  222. } // namespace megdnn
  223. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台