You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

reset_io.cpp 3.0 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495
  1. /**
  2. * \file example/reset_io.cpp
  3. *
  4. * This file is part of MegEngine, a deep learning framework developed by
  5. * Megvii.
  6. *
  7. * \copyright Copyright (c) 2020-2021 Megvii Inc. All rights reserved.
  8. */
  9. #include "../example.h"
  10. #if LITE_BUILD_WITH_MGE
  11. using namespace lite;
  12. using namespace example;
  13. bool lite::example::reset_input(const Args& args) {
  14. std::string network_path = args.model_path;
  15. std::string input_path = args.input_path;
  16. lite::Config config;
  17. //! create and load the network
  18. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  19. network->load_model(network_path);
  20. //! set input data to input tensor
  21. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  22. auto layout = input_tensor->get_layout();
  23. auto src_tensor = parse_npy(input_path);
  24. void* src = src_tensor->get_memory_ptr();
  25. input_tensor->reset(src, layout);
  26. //! forward
  27. network->forward();
  28. network->wait();
  29. //! 6. get the output data or read tensor set in network_in
  30. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  31. void* out_data = output_tensor->get_memory_ptr();
  32. size_t out_length = output_tensor->get_tensor_total_size_in_byte() /
  33. output_tensor->get_layout().get_elem_size();
  34. float max = -1.0f;
  35. float sum = 0.0f;
  36. for (size_t i = 0; i < out_length; i++) {
  37. float data = static_cast<float*>(out_data)[i];
  38. sum += data;
  39. if (max < data)
  40. max = data;
  41. }
  42. printf("max=%e, sum=%e\n", max, sum);
  43. return true;
  44. }
  45. bool lite::example::reset_input_output(const Args& args) {
  46. std::string network_path = args.model_path;
  47. std::string input_path = args.input_path;
  48. lite::Config config;
  49. //! create and load the network
  50. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  51. network->load_model(network_path);
  52. //! set input data to input tensor
  53. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  54. auto layout = input_tensor->get_layout();
  55. auto src_tensor = parse_npy(input_path);
  56. void* src = src_tensor->get_memory_ptr();
  57. input_tensor->reset(src, layout);
  58. //! set output ptr to store the network output
  59. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  60. auto result_tensor = std::make_shared<Tensor>(
  61. LiteDeviceType::LITE_CPU,
  62. Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  63. void* out_data = result_tensor->get_memory_ptr();
  64. output_tensor->reset(out_data, result_tensor->get_layout());
  65. network->forward();
  66. network->wait();
  67. float max = -1.0f;
  68. float sum = 0.0f;
  69. for (size_t i = 0; i < 1000; i++) {
  70. float data = static_cast<float*>(out_data)[i];
  71. sum += data;
  72. if (max < data)
  73. max = data;
  74. }
  75. printf("max=%e, sum=%e\n", max, sum);
  76. return true;
  77. }
  78. #endif
  79. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台