|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150 |
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- import numpy as np
-
- import megengine.functional as F
- import megengine.module as M
- from megengine import Parameter
-
-
- class GroupNorm(M.Module):
- """
- Simple implementation of GroupNorm.
- Reference: https://arxiv.org/pdf/1803.08494.pdf.
- """
-
- def __init__(self, num_groups, num_channels, eps=1e-5, affine=True):
- super().__init__()
- assert num_channels % num_groups == 0
- self.num_groups = num_groups
- self.num_channels = num_channels
- self.eps = eps
- self.affine = affine
- if self.affine:
- self.weight = Parameter(np.ones(num_channels, dtype=np.float32))
- self.bias = Parameter(np.zeros(num_channels, dtype=np.float32))
- else:
- self.weight = None
- self.bias = None
- self.reset_parameters()
-
- def reset_parameters(self):
- if self.affine:
- M.init.ones_(self.weight)
- M.init.zeros_(self.bias)
-
- def forward(self, x):
- N, C, H, W = x.shape
- assert C == self.num_channels
-
- x = x.reshape(N, self.num_groups, -1)
- mean = x.mean(axis=2, keepdims=True)
- var = (x * x).mean(axis=2, keepdims=True) - mean * mean
-
- x = (x - mean) / F.sqrt(var + self.eps)
- x = x.reshape(N, C, H, W)
- if self.affine:
- x = self.weight.reshape(1, -1, 1, 1) * x + self.bias.reshape(1, -1, 1, 1)
-
- return x
-
- def _module_info_string(self) -> str:
- s = (
- "groups={num_groups}, channels={num_channels}, "
- "eps={eps}, affine={affine}"
- )
- return s.format(**self.__dict__)
-
-
- class InstanceNorm(M.Module):
- """
- simple implementation of InstanceNorm.
- Reference: https://arxiv.org/abs/1607.08022.
- Note that InstanceNorm equals using GroupNome with num_groups=num_channels.
- """
-
- def __init__(self, num_channels, eps=1e-05, affine=True):
- super().__init__()
- self.num_channels = num_channels
- self.eps = eps
- self.affine = affine
- if self.affine:
- self.weight = Parameter(np.ones(num_channels, dtype="float32"))
- self.bias = Parameter(np.zeros(num_channels, dtype="float32"))
- else:
- self.weight = None
- self.bias = None
- self.reset_parameters()
-
- def reset_parameters(self):
- if self.affine:
- M.init.ones_(self.weight)
- M.init.zeros_(self.bias)
-
- def forward(self, x):
- N, C, H, W = x.shape
- assert C == self.num_channels
- x = x.reshape(N, C, -1)
- mean = x.mean(axis=2, keepdims=True)
- var = (x ** 2).mean(axis=2, keepdims=True) - mean * mean
-
- x = (x - mean) / F.sqrt(var + self.eps)
- x = x.reshape(N, C, H, W)
- if self.affine:
- x = self.weight.reshape(1, -1, 1, 1) * x + self.bias.reshape(1, -1, 1, 1)
-
- return x
-
- def _module_info_string(self) -> str:
- s = "channels={num_channels}, eps={eps}, affine={affine}"
- return s.format(**self.__dict__)
-
-
- class LayerNorm(M.Module):
- """
- simple implementation of LayerNorm.
- Reference: https://arxiv.org/pdf/1803.08494.pdf.
- Note that LayerNorm equals using GroupNorm with num_groups=1.
- """
-
- def __init__(self, num_channels, eps=1e-05, affine=True):
- super().__init__()
- self.num_channels = num_channels
- self.eps = eps
- self.affine = affine
- if self.affine:
- self.weight = Parameter(np.ones(num_channels, dtype="float32"))
- self.bias = Parameter(np.zeros(num_channels, dtype="float32"))
- else:
- self.weight = None
- self.bias = None
- self.reset_parameters()
-
- def reset_parameters(self):
- if self.affine:
- M.init.ones_(self.weight)
- M.init.zeros_(self.bias)
-
- def forward(self, x):
- N, C, H, W = x.shape
- assert C == self.num_channels
- x = x.reshape(x.shape[0], -1)
- # NOTE mean will keepdims in next two lines.
- mean = x.mean(axis=1, keepdims=1)
- var = (x ** 2).mean(axis=1, keepdims=1) - mean * mean
-
- x = (x - mean) / F.sqrt(var + self.eps)
- x = x.reshape(N, C, H, W)
- if self.affine:
- x = self.weight.reshape(1, -1, 1, 1) * x + self.bias.reshape(1, -1, 1, 1)
-
- return x
-
- def _module_info_string(self) -> str:
- s = "channels={num_channels}, eps={eps}, affine={affine}"
- return s.format(**self.__dict__)
|