|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275 |
- /**
- * \file dnn/test/cuda/conv_bias_int8.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
- * implied.
- */
- #include "megdnn/oprs/nn.h"
-
- #include "src/common/utils.h"
- #include "src/cuda/cudnn_with_check.h"
- #include "test/common/checker.h"
- #include "test/common/conv_bias.h"
- #include "test/cuda/benchmark.h"
- #include "test/cuda/fixture.h"
- #include "test/cuda/utils.h"
- #include "test/common/tensor.h"
- #include "test/common/workspace_wrapper.h"
-
- #define V1(x) #x
- #define V(x) V1(x)
-
- namespace megdnn {
- namespace test {
- namespace {
-
- #if MEGDNN_WITH_BENCHMARK
- struct BenchArgs {
- size_t n, ci, hi, wi, co, f, s;
- };
-
- std::vector<BenchArgs> get_resnet50_bench_args(size_t batch = 64) {
- std::vector<BenchArgs> args;
- args.emplace_back(BenchArgs{batch, 64, 56, 56, 256, 1, 1});
- args.emplace_back(BenchArgs{batch, 256, 56, 56, 32, 3, 1});
- args.emplace_back(BenchArgs{batch, 256, 56, 56, 32, 3, 2});
- args.emplace_back(BenchArgs{batch, 4, 256, 256, 32, 7, 2});
-
- args.emplace_back(BenchArgs{batch, 256, 56, 56, 64, 1, 1});
- args.emplace_back(BenchArgs{batch, 64, 56, 56, 64, 1, 1});
- args.emplace_back(BenchArgs{batch, 64, 56, 56, 64, 3, 1});
- args.emplace_back(BenchArgs{batch, 64, 56, 56, 64, 3, 2});
- args.emplace_back(BenchArgs{batch, 256, 56, 56, 64, 3, 2});
-
- args.emplace_back(BenchArgs{batch, 256, 56, 56, 512, 1, 2});
- args.emplace_back(BenchArgs{batch, 256, 56, 56, 128, 1, 2});
- args.emplace_back(BenchArgs{batch, 512, 28, 28, 128, 1, 1});
- args.emplace_back(BenchArgs{batch, 128, 28, 28, 128, 3, 1});
- args.emplace_back(BenchArgs{batch, 128, 28, 28, 512, 1, 1});
-
- args.emplace_back(BenchArgs{batch, 512, 28, 28, 1024, 1, 2});
- args.emplace_back(BenchArgs{batch, 512, 28, 28, 256, 1, 2});
- args.emplace_back(BenchArgs{batch, 1024, 14, 14, 256, 1, 1});
- args.emplace_back(BenchArgs{batch, 256, 14, 14, 256, 3, 1});
- args.emplace_back(BenchArgs{batch, 256, 14, 14, 1024, 1, 1});
- args.emplace_back(BenchArgs{batch, 256, 14, 14, 1024, 1, 2});
-
- args.emplace_back(BenchArgs{batch, 1024, 14, 14, 2048, 1, 2});
- args.emplace_back(BenchArgs{batch, 1024, 14, 14, 512, 1, 2});
- args.emplace_back(BenchArgs{batch, 2048, 7, 7, 512, 1, 1});
- args.emplace_back(BenchArgs{batch, 512, 7, 7, 512, 3, 1});
- args.emplace_back(BenchArgs{batch, 512, 7, 7, 2048, 1, 1});
- return args;
- }
-
- std::vector<BenchArgs> get_detection_bench_args(size_t batch = 16) {
- std::vector<BenchArgs> args;
- args.emplace_back(BenchArgs{batch, 4, 736, 1280, 8, 3, 2});
- args.emplace_back(BenchArgs{batch, 32, 184, 320, 16, 3, 1});
- args.emplace_back(BenchArgs{batch, 16, 184, 320, 32, 3, 1});
- args.emplace_back(BenchArgs{batch, 8, 184, 320, 16, 3, 1});
- args.emplace_back(BenchArgs{batch, 8, 184, 320, 32, 3, 1});
- args.emplace_back(BenchArgs{batch, 64, 92, 160, 32, 3, 1});
- args.emplace_back(BenchArgs{batch, 32, 184, 320, 64, 3, 2});
- args.emplace_back(BenchArgs{batch, 32, 184, 320, 32, 3, 2});
- args.emplace_back(BenchArgs{batch, 32, 92, 160, 64, 3, 1});
- args.emplace_back(BenchArgs{batch, 64, 92, 160, 8, 3, 1});
- args.emplace_back(BenchArgs{batch, 64, 92, 160, 128, 3, 2});
- args.emplace_back(BenchArgs{batch, 128, 46, 80, 32, 3, 1});
- args.emplace_back(BenchArgs{batch, 128, 46, 80, 256, 3, 2});
- args.emplace_back(BenchArgs{batch, 128, 46, 80, 8, 3, 1});
- args.emplace_back(BenchArgs{batch, 64, 92, 160, 32, 3, 2});
- args.emplace_back(BenchArgs{batch, 32, 46, 80, 128, 3, 1});
- args.emplace_back(BenchArgs{batch, 8, 46, 80, 32, 3, 1});
- args.emplace_back(BenchArgs{batch, 64, 23, 40, 256, 3, 1});
- args.emplace_back(BenchArgs{batch, 256, 23, 40, 64, 3, 1});
- args.emplace_back(BenchArgs{batch, 128, 46, 80, 64, 3, 2});
- args.emplace_back(BenchArgs{batch, 256, 23, 40, 8, 3, 1});
- args.emplace_back(BenchArgs{batch, 8, 23, 40, 32, 3, 2});
- args.emplace_back(BenchArgs{batch, 8, 12, 20, 8, 3, 1});
- args.emplace_back(BenchArgs{batch, 8, 12, 20, 8, 3, 2});
- args.emplace_back(BenchArgs{batch, 8, 6, 10, 8, 3, 1});
- return args;
- }
-
- std::vector<BenchArgs> get_det_first_bench_args(size_t batch = 16) {
- std::vector<BenchArgs> args;
- args.emplace_back(BenchArgs{batch, 4, 736, 1280, 16, 3, 2});
- args.emplace_back(BenchArgs{batch, 16, 384, 640, 16, 3, 1});
- return args;
- }
-
- void benchmark_target_algo(
- Handle* handle, const std::vector<BenchArgs>& args, DType src_dtype,
- DType filter_dtype, DType bias_dtype, DType dst_dtype,
- const char* algo = nullptr,
- param::ConvBias::Format format = param::ConvBias::Format::NCHW4) {
- megdnn_assert(src_dtype.enumv() == filter_dtype.enumv());
- CUBenchmarker<ConvBiasForward> benchmarker(handle);
- CUBenchmarker<ConvBiasForward> benchmarker_cudnn(handle);
- size_t RUNS = 1000;
- benchmarker.set_display(false).set_times(RUNS);
- benchmarker_cudnn.set_display(false).set_times(RUNS);
-
- #define CUDNN_VERSION_STRING \
- "v" V(CUDNN_MAJOR) "." V(CUDNN_MINOR) "." V(CUDNN_PATCHLEVEL)
- benchmarker_cudnn.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "DEFAULT:CUDNN:ConvBiasActivation:CUDNN_CONVOLUTION_FWD_"
- "ALGO_IMPLICIT_PRECOMP_"
- "GEMM" CUDNN_VERSION_STRING));
-
- benchmarker.set_dtype(0, src_dtype)
- .set_dtype(1, filter_dtype)
- .set_dtype(2, bias_dtype)
- .set_dtype(3, dst_dtype)
- .set_dtype(4, dst_dtype);
- benchmarker_cudnn.set_dtype(0, src_dtype)
- .set_dtype(1, filter_dtype)
- .set_dtype(2, bias_dtype)
- .set_dtype(3, dst_dtype)
- .set_dtype(4, dst_dtype);
-
- using Param = ConvBias::Param;
- using Format = Param::Format;
- // helper function to change format
- auto get_tensor_shape = [](TensorShape shape,
- Format format) -> TensorShape {
- TensorShape ret;
- if (format == Format::NCHW4) {
- ret = static_cast<TensorShape>(
- TensorLayout{shape, dtype::Int8()}
- .reshape({shape[0], shape[1] / 4, 4, shape[2],
- shape[3]})
- .dimshuffle({0, 1, 3, 4, 2}));
- } else if (format == Format::CHWN4) {
- ret = static_cast<TensorShape>(
- TensorLayout{shape, dtype::Int8()}
- .reshape({shape[0], shape[1] / 4, 4, shape[2],
- shape[3]})
- .dimshuffle({1, 3, 4, 0, 2}));
- }
- return ret;
- };
-
- for (auto&& arg : args) {
- Param param;
- param.pad_h = param.pad_w = arg.f / 2;
- param.stride_h = param.stride_w = arg.s;
- param.format = format;
-
- size_t ho = infer_conv_shape(arg.hi, arg.f, arg.s, arg.f / 2);
- size_t wo = infer_conv_shape(arg.wi, arg.f, arg.s, arg.f / 2);
-
- benchmarker.set_param(param);
- if (!algo) {
- benchmarker.proxy()->target_algo = nullptr;
- }
- TensorShape src{arg.n, arg.ci, arg.hi, arg.wi},
- filter{arg.co, arg.ci, arg.f, arg.f}, bias{1, arg.co, 1, 1},
- z{arg.n, arg.co, ho, wo}, dst = z;
- float time_in_ms = 0.f;
- if (algo) {
- time_in_ms =
- algo_benchmark<ConvBiasForward, OprProxy<ConvBiasForward>,
- CUTimer>(benchmarker,
- {get_tensor_shape(src, format),
- get_tensor_shape(filter, format),
- get_tensor_shape(bias, format),
- {},
- {}},
- algo) /
- RUNS;
- } else {
- time_in_ms = benchmarker.execs({get_tensor_shape(src, format),
- get_tensor_shape(filter, format),
- get_tensor_shape(bias, format),
- {},
- {}}) /
- RUNS;
- }
- Format format_cudnn = Format::NCHW4;
- param.format = format_cudnn;
- benchmarker_cudnn.set_param(param);
- auto time_in_ms_cudnn =
- benchmarker_cudnn.execs({get_tensor_shape(src, format_cudnn),
- get_tensor_shape(filter, format_cudnn),
- get_tensor_shape(bias, format_cudnn),
- {},
- {}}) /
- RUNS;
- float flo = 2.0 * arg.n * arg.co * ho * wo * arg.ci * arg.f * arg.f /
- (1e12);
- printf("src=%s, filter=%s, dst=%s, time(algo=%s)=%.2f %.2fTops, "
- "time(cudnn)=%.2f %.2fTops, "
- "perf(algo=%s)/perf(cudnn)=%.2f\n",
- src.to_string().c_str(), filter.to_string().c_str(),
- dst.to_string().c_str(), algo, time_in_ms,
- (flo / (time_in_ms * 1e-3)), time_in_ms_cudnn,
- (flo / (time_in_ms_cudnn * 1e-3)), algo,
- time_in_ms_cudnn / time_in_ms);
- printf("bench with z tensor\n");
- if (algo) {
- time_in_ms =
- algo_benchmark<ConvBiasForward, OprProxy<ConvBiasForward>,
- CUTimer>(benchmarker,
- {get_tensor_shape(src, format),
- get_tensor_shape(filter, format),
- get_tensor_shape(bias, format),
- get_tensor_shape(z, format),
- {}},
- algo) /
- RUNS;
- } else {
- time_in_ms = benchmarker.execs({get_tensor_shape(src, format),
- get_tensor_shape(filter, format),
- get_tensor_shape(bias, format),
- get_tensor_shape(z, format),
- {}}) /
- RUNS;
- }
- time_in_ms_cudnn =
- benchmarker_cudnn.execs({get_tensor_shape(src, format_cudnn),
- get_tensor_shape(filter, format_cudnn),
- get_tensor_shape(bias, format_cudnn),
- get_tensor_shape(z, format_cudnn),
- {}}) /
- RUNS;
- printf("src=%s, filter=%s, dst=%s, time(algo=%s)=%.2f %.2fTops, "
- "time(cudnn)=%.2f %.2fTops, "
- "perf(algo=%s)/perf(cudnn)=%.2f\n",
- src.to_string().c_str(), filter.to_string().c_str(),
- dst.to_string().c_str(), algo, time_in_ms,
- (flo / (time_in_ms * 1e-3)), time_in_ms_cudnn,
- (flo / (time_in_ms_cudnn * 1e-3)), algo,
- time_in_ms_cudnn / time_in_ms);
- }
- }
-
- void benchmark_target_algo_with_cudnn_tsc(
- Handle* handle, const std::vector<BenchArgs>& args, DType src_dtype,
- DType filter_dtype, DType bias_dtype, DType dst_dtype,
- const char* algo = nullptr,
- param::ConvBias::Format format = param::ConvBias::Format::NCHW4) {
- megdnn_assert(src_dtype.enumv() == filter_dtype.enumv());
- CUBenchmarker<ConvBiasForward> benchmarker(handle);
- CUBenchmarker<ConvBiasForward> benchmarker_cudnn(handle);
- size_t RUNS = 1000;
- benchmarker.set_display(false).set_times(RUNS);
- benchmarker_cudnn.set_display(false).set_times(RUNS);
-
- std::unique_ptr<OprProxy<ConvBiasForward>> proxy{
- new OprProxy<ConvBiasForward>{true}};
-
- if (!algo) {
- benchmarker.set_proxy(proxy);
- }
-
- benchmarker_cudnn.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "DEFAULT:CUDNN:ConvBiasActivation:CUDNN_CONVOLUTION_FWD_"
- "ALGO_IMPLICIT_PRECOMP_"
- "GEMM" CUDNN_VERSION_STRING));
- #undef CUDNN_VERSION_STRING
-
- benchmarker.set_dtype(0, src_dtype)
- .set_dtype(1, filter_dtype)
- .set_dtype(2, bias_dtype)
- .set_dtype(3, dst_dtype)
- .set_dtype(4, dst_dtype);
- benchmarker_cudnn.set_dtype(0, src_dtype)
- .set_dtype(1, filter_dtype)
- .set_dtype(2, bias_dtype)
- .set_dtype(3, dst_dtype)
- .set_dtype(4, dst_dtype);
-
- using Param = ConvBias::Param;
- using Format = Param::Format;
- // helper function to change format
- auto get_tensor_shape = [](TensorShape shape,
- Format format) -> TensorShape {
- TensorShape ret;
- if (format == Format::NCHW4) {
- ret = static_cast<TensorShape>(
- TensorLayout{shape, dtype::Int8()}
- .reshape({shape[0], shape[1] / 4, 4, shape[2],
- shape[3]})
- .dimshuffle({0, 1, 3, 4, 2}));
- } else if (format == Format::NCHW32) {
- ret = static_cast<TensorShape>(
- TensorLayout{shape, dtype::Int8()}
- .reshape({shape[0], shape[1] / 32, 32, shape[2],
- shape[3]})
- .dimshuffle({0, 1, 3, 4, 2}));
- } else if (format == Format::CHWN4) {
- ret = static_cast<TensorShape>(
- TensorLayout{shape, dtype::Int8()}
- .reshape({shape[0], shape[1] / 4, 4, shape[2],
- shape[3]})
- .dimshuffle({1, 3, 4, 0, 2}));
- }
- return ret;
- };
-
- for (auto&& arg : args) {
- Param param;
- param.pad_h = param.pad_w = arg.f / 2;
- param.stride_h = param.stride_w = arg.s;
- param.format = format;
-
- size_t ho = infer_conv_shape(arg.hi, arg.f, arg.s, arg.f / 2);
- size_t wo = infer_conv_shape(arg.wi, arg.f, arg.s, arg.f / 2);
-
- benchmarker.set_param(param);
- if (!algo) {
- benchmarker.proxy()->target_algo = nullptr;
- }
- TensorShape src{arg.n, arg.ci, arg.hi, arg.wi},
- filter{arg.co, arg.ci, arg.f, arg.f}, bias{1, arg.co, 1, 1},
- z{arg.n, arg.co, ho, wo}, dst = z;
- // skip testcase which cannot enable nchw32 tensorcore
- if (format == Format::NCHW32 && (arg.co % 32 != 0 || arg.ci % 32 != 0))
- continue;
- // skip testcase which cannot enable nchw4/chwn4 tensorcore
- if ((format == Format::CHWN4 || format == Format::NCHW4) &&
- (arg.ci % 16 != 0))
- continue;
- Format format_cudnn = arg.ci % 32 == 0 && arg.co % 32 == 0
- ? Format::NCHW32
- : Format::NCHW4;
- param.format = format_cudnn;
- benchmarker_cudnn.set_param(param);
-
- float time_in_ms = 0.f;
- if (algo) {
- time_in_ms =
- algo_benchmark<ConvBiasForward, OprProxy<ConvBiasForward>,
- CUTimer>(benchmarker,
- {get_tensor_shape(src, format),
- get_tensor_shape(filter, format),
- get_tensor_shape(bias, format),
- {},
- {}},
- algo) /
- RUNS;
- } else {
- time_in_ms = benchmarker.execs({get_tensor_shape(src, format),
- get_tensor_shape(filter, format),
- get_tensor_shape(bias, format),
- {},
- {}}) /
- RUNS;
- }
- float time_in_ms_cudnn =
- benchmarker_cudnn.execs({get_tensor_shape(src, format_cudnn),
- get_tensor_shape(filter, format_cudnn),
- get_tensor_shape(bias, format_cudnn),
- {},
- {}}) /
- RUNS;
-
- float flo = 2.0 * arg.n * arg.co * ho * wo * arg.ci * arg.f * arg.f /
- (1e12);
- printf("src=%s, filter=%s, dst=%s, time(algo=%s)=%.2f %.2fTops, "
- "time(cudnn)=%.2f %.2fTops, "
- "perf(algo=%s)/perf(cudnn)=%.2f\n",
- src.to_string().c_str(), filter.to_string().c_str(),
- dst.to_string().c_str(), algo, time_in_ms,
- (flo / (time_in_ms * 1e-3)), time_in_ms_cudnn,
- (flo / (time_in_ms_cudnn * 1e-3)), algo,
- time_in_ms_cudnn / time_in_ms);
- printf("bench with z tensor\n");
- if (algo) {
- time_in_ms =
- algo_benchmark<ConvBiasForward, OprProxy<ConvBiasForward>,
- CUTimer>(benchmarker,
- {get_tensor_shape(src, format),
- get_tensor_shape(filter, format),
- get_tensor_shape(bias, format),
- get_tensor_shape(z, format),
- {}},
- algo) /
- RUNS;
- } else {
- time_in_ms = benchmarker.execs({get_tensor_shape(src, format),
- get_tensor_shape(filter, format),
- get_tensor_shape(bias, format),
- get_tensor_shape(z, format),
- {}}) /
- RUNS;
- }
- time_in_ms_cudnn =
- benchmarker_cudnn.execs({get_tensor_shape(src, format_cudnn),
- get_tensor_shape(filter, format_cudnn),
- get_tensor_shape(bias, format_cudnn),
- get_tensor_shape(z, format_cudnn),
- {}}) /
- RUNS;
- printf("src=%s, filter=%s, dst=%s, time(algo=%s)=%.2f %.2fTops, "
- "time(cudnn)=%.2f %.2fTops, "
- "perf(algo=%s)/perf(cudnn)=%.2f\n",
- src.to_string().c_str(), filter.to_string().c_str(),
- dst.to_string().c_str(), algo, time_in_ms,
- (flo / (time_in_ms * 1e-3)), time_in_ms_cudnn,
- (flo / (time_in_ms_cudnn * 1e-3)), algo,
- time_in_ms_cudnn / time_in_ms);
- }
- }
- #endif
- } // namespace
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_1x1) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::NCHW4, conv_bias::get_int8_nchw4_args(1));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_3x3) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::NCHW4);
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_5x5) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::NCHW4, conv_bias::get_int8_nchw4_args(5));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_7x7) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::NCHW4, conv_bias::get_int8_nchw4_args(7));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_WITH_Z) {
- require_compute_capability(6, 1);
- Checker<ConvBiasForward> checker(handle_cuda());
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM"));
- UniformIntRNG rng{-3, 3};
- UniformIntRNG bias_rng{-50, 50};
- checker.set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &bias_rng)
- .set_rng(3, &rng)
- .set_dtype(0, dtype::QuantizedS8{1.2f})
- .set_dtype(1, dtype::QuantizedS8{1.3f})
- .set_dtype(2, dtype::QuantizedS32{1.2f * 1.3f})
- .set_dtype(3, dtype::QuantizedS8{1.1f})
- .set_dtype(4, dtype::QuantizedS8{1.0f})
- .set_epsilon(1 + 1e-3)
- .set_max_avg_error(1e-1)
- .set_max_avg_biased_error(1e-1);
- param::ConvBias param;
- param.pad_h = param.pad_w = 1;
- param.stride_h = param.stride_w = 1;
- param.format = param::ConvBias::Format::NCHW4;
- checker.set_param(param).execs({{32, 4, 12, 12, 4},
- {16, 4, 3, 3, 4},
- {1, 4, 1, 1, 4},
- {32, 4, 12, 12, 4},
- {}});
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_STRIDE2_WITH_Z) {
- require_compute_capability(6, 1);
- Checker<ConvBiasForward> checker(handle_cuda());
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM"));
- UniformIntRNG rng{-3, 3};
- UniformIntRNG bias_rng{-50, 50};
- checker.set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &bias_rng)
- .set_rng(3, &rng)
- .set_dtype(0, dtype::QuantizedS8{1.2f})
- .set_dtype(1, dtype::QuantizedS8{1.3f})
- .set_dtype(2, dtype::QuantizedS32{1.2f * 1.3f})
- .set_dtype(3, dtype::QuantizedS8{1.1f})
- .set_dtype(4, dtype::QuantizedS8{1.0f})
- .set_epsilon(1 + 1e-3)
- .set_max_avg_error(1e-1)
- .set_max_avg_biased_error(1e-1);
- param::ConvBias param;
- param.pad_h = param.pad_w = 1;
- param.stride_h = param.stride_w = 2;
- param.format = param::ConvBias::Format::NCHW4;
- checker.set_param(param).execs({{32, 4, 12, 12, 4},
- {16, 4, 3, 3, 4},
- {1, 4, 1, 1, 4},
- {32, 4, 6, 6, 4},
- {}});
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_CHECK_BOUNDS_1x1) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::NCHW4,
- conv_bias::get_int8_nchw4_args_check_bounds(1));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_CHECK_BOUNDS_3x3) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::NCHW4,
- conv_bias::get_int8_nchw4_args_check_bounds(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_CHECK_BOUNDS_5x5) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::NCHW4,
- conv_bias::get_int8_nchw4_args_check_bounds(5));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_CHECK_BOUNDS_7x7) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::NCHW4,
- conv_bias::get_int8_nchw4_args_check_bounds(7));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_CHWN4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::CHWN4);
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_WITH_Z) {
- require_compute_capability(6, 1);
- Checker<ConvBiasForward> checker(handle_cuda());
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "INT8_CHWN4_DOTPROD_IMPLICIT_GEMM"));
- UniformIntRNG rng{-3, 3};
- UniformIntRNG bias_rng{-50, 50};
- checker.set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &bias_rng)
- .set_rng(3, &rng)
- .set_dtype(0, dtype::QuantizedS8{1.2f})
- .set_dtype(1, dtype::QuantizedS8{1.3f})
- .set_dtype(2, dtype::QuantizedS32{1.2f * 1.3f})
- .set_dtype(3, dtype::QuantizedS8{1.1f})
- .set_dtype(4, dtype::QuantizedS8{1.1f})
- .set_epsilon(1 + 1e-3)
- .set_max_avg_error(1e-1)
- .set_max_avg_biased_error(1e-1);
- param::ConvBias param;
- param.pad_h = param.pad_w = 1;
- param.stride_h = param.stride_w = 1;
- param.format = param::ConvBias::Format::CHWN4;
- checker.set_param(param).execs({{4, 12, 12, 32, 4},
- {4, 3, 3, 16, 4},
- {4, 1, 1, 1, 4},
- {4, 12, 12, 32, 4},
- {}});
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_HSWISH) {
- require_compute_capability(6, 1);
- Checker<ConvBiasForward> checker(handle_cuda());
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "INT8_CHWN4_DOTPROD_IMPLICIT_GEMM"));
- UniformIntRNG rng{-3, 3};
- UniformIntRNG bias_rng{-50, 50};
- checker.set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &bias_rng)
- .set_rng(3, &rng)
- .set_dtype(0, dtype::QuantizedS8{1.2f})
- .set_dtype(1, dtype::QuantizedS8{1.3f})
- .set_dtype(2, dtype::QuantizedS32{1.2f * 1.3f})
- .set_dtype(4, dtype::QuantizedS8{0.001f})
- .set_epsilon(1 + 1e-3)
- .set_max_avg_error(1e-1)
- .set_max_avg_biased_error(1e-1);
- param::ConvBias param;
- param.pad_h = param.pad_w = 1;
- param.stride_h = param.stride_w = 1;
- param.format = param::ConvBias::Format::CHWN4;
- param.nonlineMode = param::ConvBias::NonlineMode::H_SWISH;
- checker.set_param(param).execs(
- {{4, 12, 12, 32, 4}, {4, 3, 3, 16, 4}, {4, 1, 1, 1, 4}, {}, {}});
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_CHECK_BOUNDS) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_CHWN4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_args_check_bounds(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_SMALL_CHANNEL_1x1) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_CHWN4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_small_channel_args(1));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_SMALL_CHANNEL_3x3) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_CHWN4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_small_channel_args(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_SMALL_CHANNEL_5x5) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_CHWN4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_small_channel_args(5));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_SMALL_CHANNEL_7x7) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_CHWN4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_small_channel_args(7));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_SMALL_CHANNEL_CHECK_BOUNDS) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::NCHW4,
- conv_bias::get_int8_nchw4_small_channel_args_check_bounds(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_SMALL_CHANNEL_1x1_CHECK_BOUNDS) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_CHWN4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_small_channel_args_check_bounds(1));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_SMALL_CHANNEL_5x5_CHECK_BOUNDS) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_CHWN4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_small_channel_args_check_bounds(5));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_SMALL_CHANNEL_7x7_CHECK_BOUNDS) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_CHWN4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_small_channel_args_check_bounds(7));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_TENSORCORE_1x1) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_IMMA_IMPLICIT_GEMM_mma16x16x16",
- param::ConvBias::Format::NCHW4,
- conv_bias::get_int8_nchw4_tensorcore_args(1));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_TENSORCORE_3x3) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_IMMA_IMPLICIT_GEMM_mma16x16x16",
- param::ConvBias::Format::NCHW4,
- conv_bias::get_int8_nchw4_tensorcore_args(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_TENSORCORE_5x5) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_IMMA_IMPLICIT_GEMM_mma16x16x16",
- param::ConvBias::Format::NCHW4,
- conv_bias::get_int8_nchw4_tensorcore_args(5));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_TENSORCORE_7x7) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_IMMA_IMPLICIT_GEMM_mma16x16x16",
- param::ConvBias::Format::NCHW4,
- conv_bias::get_int8_nchw4_tensorcore_args(7));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_TENSORCORE_CHECK_BOUNDS_ALGO_0) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_IMMA_IMPLICIT_GEMM_mma16x16x16",
- param::ConvBias::Format::NCHW4,
- conv_bias::get_int8_nchw4_args_check_bounds(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_TENSORCORE_CHECK_BOUNDS_ALGO_1) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_IMMA_IMPLICIT_GEMM_mma8x32x16",
- param::ConvBias::Format::NCHW4,
- conv_bias::get_int8_nchw4_args_check_bounds(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_TENSORCORE_CHECK_BOUNDS_ALGO_2) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_IMMA_IMPLICIT_GEMM_mma32x8x16",
- param::ConvBias::Format::NCHW4,
- conv_bias::get_int8_nchw4_args_check_bounds(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_TENSORCORE_ALGO_0) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.1f},
- handle_cuda(), "INT8_CHWN4_IMMA_IMPLICIT_GEMM_mma16x16x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_tensorcore_args(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_TENSORCORE_ALGO_1) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.1f},
- handle_cuda(), "INT8_CHWN4_IMMA_IMPLICIT_GEMM_mma32x8x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_tensorcore_args(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_TENSORCORE_ALGO_2) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.1f},
- handle_cuda(), "INT8_CHWN4_IMMA_IMPLICIT_GEMM_mma8x32x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_tensorcore_args(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_TENSORCORE_CHECK_BOUNDS_1x1) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_CHWN4_IMMA_IMPLICIT_GEMM_mma16x16x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_args_check_bounds(1));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_TENSORCORE_CHECK_BOUNDS_5x5) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_CHWN4_IMMA_IMPLICIT_GEMM_mma16x16x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_args_check_bounds(5));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_TENSORCORE_CHECK_BOUNDS_7x7) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_CHWN4_IMMA_IMPLICIT_GEMM_mma16x16x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_args_check_bounds(7));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_TENSORCORE_WITH_Z) {
- require_compute_capability(7, 5);
- Checker<ConvBiasForward> checker(handle_cuda());
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "INT8_NCHW4_IMMA_IMPLICIT_GEMM_mma16x16x16"));
- UniformIntRNG rng{-3, 3};
- UniformIntRNG bias_rng{-50, 50};
- checker.set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &bias_rng)
- .set_rng(3, &rng)
- .set_dtype(0, dtype::QuantizedS8{1.2f})
- .set_dtype(1, dtype::QuantizedS8{1.3f})
- .set_dtype(2, dtype::QuantizedS32{1.2f * 1.3f})
- .set_dtype(3, dtype::QuantizedS8{1.1f})
- .set_dtype(4, dtype::QuantizedS8{1.0f})
- .set_epsilon(1 + 1e-3)
- .set_max_avg_error(1e-1)
- .set_max_avg_biased_error(1e-1);
- param::ConvBias param;
- param.pad_h = param.pad_w = 1;
- param.stride_h = param.stride_w = 1;
- param.format = param::ConvBias::Format::NCHW4;
- checker.set_param(param).execs({{64, 8, 12, 12, 4},
- {64, 8, 3, 3, 4},
- {1, 16, 1, 1, 4},
- {64, 16, 12, 12, 4},
- {}});
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_TENSORCORE_WITH_Z) {
- require_compute_capability(7, 5);
- Checker<ConvBiasForward> checker(handle_cuda());
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_mma16x16x16"));
- UniformIntRNG rng{-3, 3};
- UniformIntRNG bias_rng{-50, 50};
- checker.set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &bias_rng)
- .set_rng(3, &rng)
- .set_dtype(0, dtype::QuantizedS8{1.2f})
- .set_dtype(1, dtype::QuantizedS8{1.3f})
- .set_dtype(2, dtype::QuantizedS32{1.2f * 1.3f})
- .set_dtype(3, dtype::QuantizedS8{1.1f})
- .set_dtype(4, dtype::QuantizedS8{1.0f})
- .set_epsilon(1 + 1e-3)
- .set_max_avg_error(1e-1)
- .set_max_avg_biased_error(1e-1);
- param::ConvBias param;
- param.pad_h = param.pad_w = 1;
- param.stride_h = param.stride_w = 1;
- param.format = param::ConvBias::Format::CHWN4;
- checker.set_param(param).execs({{8, 12, 12, 64, 4},
- {8, 3, 3, 64, 4},
- {16, 1, 1, 1, 4},
- {16, 12, 12, 64, 4},
- {}});
- }
-
- TEST_F(CUDA,
- CONV_BIAS_INT8_CHWN4_REFORMAT_FILTER_TENSORCORE_CHECK_BOUNDS_ALGO_0) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_REORDER_FILTER_mma16x16x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_args_check_bounds(3));
- }
-
- TEST_F(CUDA,
- CONV_BIAS_INT8_CHWN4_REFORMAT_FILTER_TENSORCORE_CHECK_BOUNDS_ALGO_1) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_REORDER_FILTER_mma8x32x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_args_check_bounds(3));
- }
-
- TEST_F(CUDA,
- CONV_BIAS_INT8_CHWN4_REFORMAT_FILTER_TENSORCORE_CHECK_BOUNDS_ALGO_2) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_REORDER_FILTER_mma32x8x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_args_check_bounds(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_REFORMAT_FILTER_TENSORCORE_ALGO_0) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_REORDER_FILTER_mma16x16x16",
- param::ConvBias::Format::CHWN4, conv_bias::get_int8_chwn4_args(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_REFORMAT_FILTER_TENSORCORE_ALGO_1) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_REORDER_FILTER_mma8x32x16",
- param::ConvBias::Format::CHWN4, conv_bias::get_int8_chwn4_args(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_REFORMAT_FILTER_TENSORCORE_ALGO_2) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_REORDER_FILTER_mma32x8x16",
- param::ConvBias::Format::CHWN4, conv_bias::get_int8_chwn4_args(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_UNROLL_WIDTH_TENSORCORE_ALGO_0) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.1f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_UNROLL_WIDTH_mma16x16x16",
- param::ConvBias::Format::CHWN4, conv_bias::get_int8_chwn4_args(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_UNROLL_WIDTH_TENSORCORE_ALGO_1) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_UNROLL_WIDTH_mma8x32x16",
- param::ConvBias::Format::CHWN4, conv_bias::get_int8_chwn4_args(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_UNROLL_WIDTH_TENSORCORE_ALGO_2) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_UNROLL_WIDTH_mma32x8x16",
- param::ConvBias::Format::CHWN4, conv_bias::get_int8_chwn4_args(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_UNROLL_WIDTH_TENSORCORE_1x1) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.1f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_UNROLL_WIDTH_mma16x16x16",
- param::ConvBias::Format::CHWN4, conv_bias::get_int8_chwn4_args(1));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_UNROLL_WIDTH_TENSORCORE_5x5) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.1f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_UNROLL_WIDTH_mma16x16x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_args_small_batch(5));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_UNROLL_WIDTH_TENSORCORE_7x7) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.1f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_UNROLL_WIDTH_mma16x16x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_args_small_batch(7));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_UNROLL_WIDTH_TENSORCORE_5x5_ALGO_1) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.1f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_UNROLL_WIDTH_mma32x8x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_args_small_batch(5));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_UNROLL_WIDTH_TENSORCORE_5x5_ALGO_2) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.1f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_UNROLL_WIDTH_mma8x32x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_args_small_batch(5));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_UNROLL_WIDTH_TENSORCORE_1x1_ALGO_1) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.1f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_UNROLL_WIDTH_mma32x8x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_args_small_batch(1));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_UNROLL_WIDTH_TENSORCORE_1x1_ALGO_2) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.1f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_UNROLL_WIDTH_mma8x32x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_args_small_batch(1));
- }
-
-
- #if CUDA_VERSION >= 10020
- /// \note: we only check several cases and block sizes in megdnn_test, the
- /// full testcases are written in cutlass repository
- TEST_F(CUDA, CUTLASS_CONV_BIAS_INT8_NCHW32_IMMA) {
- require_compute_capability_eq(7, 5);
- Checker<ConvBiasForward> checker(handle_cuda());
- auto check = [&checker](const std::string& algo) {
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(algo.c_str()));
- UniformIntRNG rng{-8, 8};
- UniformIntRNG bias_rng{-50, 50};
- UniformIntRNG const_rng{1, 1};
- // use scale that are all integers to avoid rouding error
- checker.set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &bias_rng)
- .set_rng(3, &rng)
- .set_dtype(0, dtype::QuantizedS8{6.0f})
- .set_dtype(1, dtype::QuantizedS8{1.0f})
- .set_dtype(2, dtype::QuantizedS32{6.0f})
- .set_dtype(3, dtype::QuantizedS8{1.0f})
- .set_dtype(4, dtype::QuantizedS8{6.0f})
- .set_epsilon(1e-3);
- param::ConvBias param;
- param.pad_h = param.pad_w = 1;
- param.stride_h = param.stride_w = 1;
- param.format = param::ConvBias::Format::NCHW32;
- checker.set_param(param).execs({{16, 16, 7, 7, 32},
- {512, 16, 3, 3, 32},
- {1, 16, 1, 1, 32},
- {},
- {}});
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- checker.set_param(param).execs({{16, 16, 7, 7, 32},
- {512, 16, 1, 1, 32},
- {1, 16, 1, 1, 32},
- {},
- {}});
- param.nonlineMode = param::ConvBias::NonlineMode::H_SWISH;
- checker.set_param(param).execs({{16, 16, 7, 7, 32},
- {512, 16, 3, 3, 32},
- {1, 16, 1, 1, 32},
- {},
- {}});
- // use non integer scale
- param.nonlineMode = param::ConvBias::NonlineMode::H_SWISH;
- checker.set_dtype(0, dtype::QuantizedS8{1.1f})
- .set_dtype(1, dtype::QuantizedS8{1.2f})
- .set_dtype(2, dtype::QuantizedS32{1.1f * 1.2f})
- .set_dtype(3, dtype::QuantizedS8{1.1f})
- .set_dtype(4, dtype::QuantizedS8{6.0f})
- .set_epsilon(1 + 1e-3)
- .set_max_avg_error(1e-1)
- .set_max_avg_biased_error(1e-1)
- .execs({{16, 16, 7, 7, 32},
- {512, 16, 3, 3, 32},
- {1, 16, 1, 1, 32},
- {16, 16, 7, 7, 32},
- {}});
- };
- std::string algo = ConvBias::algo_name<ConvBias::DirectParam>(
- "INT8_NCHW32_IMMA_IMPLICIT_GEMM_256X128X64_64X64X64",
- ConvBias::DirectParam{});
- check(algo);
- algo = ConvBias::algo_name<ConvBias::DirectParam>(
- "INT8_NCHW32_IMMA_IMPLICIT_GEMM_32X64X64_32X16X64",
- ConvBias::DirectParam{});
- check(algo);
- }
- #endif
-
- #if MEGDNN_WITH_BENCHMARK
- TEST_F(CUDA, BENCHMARK_CONV_BIAS_INT8_CHWN4) {
- require_compute_capability(6, 1);
- benchmark_target_algo(
- handle_cuda(), get_resnet50_bench_args(), dtype::QuantizedS8{1.2f},
- dtype::QuantizedS8{1.3f}, dtype::QuantizedS32{1.2f * 1.3f},
- dtype::QuantizedS8{1.0f}, "INT8_CHWN4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::CHWN4);
- }
-
- TEST_F(CUDA, BENCHMARK_CONV_BIAS_INT8_NCHW4) {
- require_compute_capability(6, 1);
- benchmark_target_algo(
- handle_cuda(), get_resnet50_bench_args(), dtype::QuantizedS8{1.2f},
- dtype::QuantizedS8{1.3f}, dtype::QuantizedS32{1.2f * 1.3f},
- dtype::QuantizedS8{1.0f}, "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::NCHW4);
- }
-
- TEST_F(CUDA, BENCHMARK_CONV_BIAS_INT8_CHWN4_TENSORCORE) {
- require_compute_capability(7, 5);
- benchmark_target_algo_with_cudnn_tsc(
- handle_cuda(), get_resnet50_bench_args(256),
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.0f},
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_mma16x16x16",
- param::ConvBias::Format::CHWN4);
- }
-
- TEST_F(CUDA, BENCHMARK_CONV_BIAS_INT8_CHWN4_TENSORCORE_ALL_ALGO) {
- require_compute_capability(7, 5);
- benchmark_target_algo_with_cudnn_tsc(
- handle_cuda(), get_resnet50_bench_args(256),
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.0f}, nullptr,
- param::ConvBias::Format::CHWN4);
- }
-
- TEST_F(CUDA, BENCHMARK_CONV_BIAS_INT8_CHWN4_DET_ALL_ALGO) {
- require_compute_capability(7, 5);
- benchmark_target_algo_with_cudnn_tsc(
- handle_cuda(), get_detection_bench_args(), dtype::QuantizedS8{1.2f},
- dtype::QuantizedS8{1.3f}, dtype::QuantizedS32{1.2f * 1.3f},
- dtype::QuantizedS8{1.0f}, nullptr, param::ConvBias::Format::CHWN4);
- }
-
- TEST_F(CUDA, BENCHMARK_CONV_BIAS_INT8_NCHW4_TENSORCORE) {
- require_compute_capability(7, 5);
- benchmark_target_algo_with_cudnn_tsc(
- handle_cuda(), get_resnet50_bench_args(256),
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.0f},
- "INT8_NCHW4_IMMA_IMPLICIT_GEMM_mma16x16x16",
- param::ConvBias::Format::NCHW4);
- }
-
- TEST_F(CUDA, BENCHMARK_CONV_BIAS_INT8_CHWN4_SMALL_CHANNEL) {
- require_compute_capability(6, 1);
- std::vector<BenchArgs> args;
- args.push_back(BenchArgs{64, 4, 224, 224, 64, 7, 2});
- benchmark_target_algo(
- handle_cuda(), args, dtype::QuantizedS8{1.2f},
- dtype::QuantizedS8{1.3f}, dtype::QuantizedS32{1.2f * 1.3f},
- dtype::QuantizedS8{1.0f}, "INT8_CHWN4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::CHWN4);
- }
-
-
- #if CUDA_VERSION >= 10020
- TEST_F(CUDA, BENCHMARK_CUTLASS_CONV_BIAS_INT8_NCHW32) {
- require_compute_capability(7, 5);
- benchmark_target_algo_with_cudnn_tsc(
- handle_cuda(), get_resnet50_bench_args(256),
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.0f},
- "DIRECT:INT8_NCHW32_IMMA_IMPLICIT_GEMM",
- param::ConvBias::Format::NCHW32);
- }
- #endif
-
- TEST_F(CUDA, BENCHMARK_CUTLASS_CONV_BIAS_INT8_NCHW4) {
- require_compute_capability(6, 1);
- benchmark_target_algo(
- handle_cuda(), get_resnet50_bench_args(64),
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.0f},
- "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM", param::ConvBias::Format::NCHW4);
- }
-
- TEST_F(CUDA, BENCHMARK_SASS_CONV_BIAS_INT8_NCHW4_DET_FIRST) {
- require_compute_capability(6, 1);
- std::string algo = ConvBias::algo_name<ConvBias::DirectParam>(
- "SASS_INT8_NCHW4_DOTPROD_IMPLICIT_GEMM_128X32_64",
- ConvBias::DirectParam{});
- benchmark_target_algo(handle_cuda(), get_det_first_bench_args(16),
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f},
- dtype::QuantizedS8{1.0f}, algo.c_str(),
- param::ConvBias::Format::NCHW4);
- }
-
- TEST_F(CUDA, BENCHMARK_CUTLASS_CONV_BIAS_INT8_NCHW4_DET_FIRST) {
- require_compute_capability(6, 1);
- benchmark_target_algo(
- handle_cuda(), get_det_first_bench_args(16),
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.0f},
- "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM_16", param::ConvBias::Format::NCHW4);
- }
-
- #endif
- } // namespace test
- } // namespace megdnn
-
- #undef V1
- #undef V
-
- // vim: syntax=cpp.doxygen
|