You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

nn.h 63 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521
  1. /**
  2. * \file dnn/include/megdnn/oprs/nn.h
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #pragma once
  13. #include "megdnn/internal/opr_header_prologue.h"
  14. namespace megdnn {
  15. class SeparableConvBase : public OperatorBase {
  16. DEF_OPR_IMPL_CTOR(SeparableConvBase, OperatorBase);
  17. DEF_OPR_PARAM(SeparableConv);
  18. public:
  19. using Mode = Param::Mode;
  20. protected:
  21. void deduce_layout_fwd(const TensorLayout& src,
  22. const TensorLayout& filter_x,
  23. const TensorLayout& filter_y, TensorLayout& dst);
  24. void check_layout_fwd(const TensorLayout& src, const TensorLayout& filter_x,
  25. const TensorLayout& filter_y,
  26. const TensorLayout& dst);
  27. };
  28. class SeparableConvForward : public SeparableConvBase {
  29. DEF_OPR_IMPL(SeparableConvForward, SeparableConvBase, 3, 1);
  30. public:
  31. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter_x,
  32. _megdnn_tensor_in filter_y, _megdnn_tensor_out dst,
  33. _megdnn_workspace workspace) = 0;
  34. void deduce_layout(const TensorLayout& src, const TensorLayout& filter_x,
  35. const TensorLayout& filter_y, TensorLayout& dst);
  36. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  37. const TensorLayout& filter_x,
  38. const TensorLayout& filter_y,
  39. const TensorLayout& dst) = 0;
  40. protected:
  41. void check_exec(const TensorLayout& src, const TensorLayout& filter_x,
  42. const TensorLayout& filter_y, const TensorLayout& dst,
  43. size_t workspace_in_bytes);
  44. };
  45. using SeparableConv = SeparableConvForward;
  46. namespace detail {
  47. struct PreprocessedFilter {
  48. //! user data; its lifetime should be bound to MegDNN Convolution
  49. //! operator
  50. void* algorithm_id;
  51. TensorNDArray tensors;
  52. };
  53. } // namespace intl
  54. /**
  55. * \brief base class for convolution operation
  56. *
  57. * This operator is supposed to perform convolution on arbitrary input
  58. * dimensions. The input/output format is N, C, dims..., and kernel format can
  59. * take two forms:
  60. * 1. OC, IC, dims..., for conventional dense convolution
  61. * 2. GROUP, OC_PER_GRP, IC_PER_GRP, dims... for sparse group convolution
  62. *
  63. * Currently, only 2D images are supported.
  64. */
  65. template <typename Parameter>
  66. class ConvolutionBase : public OperatorBase {
  67. DEF_OPR_IMPL_CTOR(ConvolutionBase, OperatorBase);
  68. using Param = Parameter;
  69. public:
  70. Param& param() { return m_param; }
  71. const Param& param() const { return m_param; }
  72. protected:
  73. Param m_param;
  74. public:
  75. static constexpr size_t MAX_SPATIAL_DIM = 2;
  76. using Mode = typename Param::Mode;
  77. struct CanonizedFilterMeta {
  78. DType dtype;
  79. typename Param::Format format;
  80. uint32_t
  81. //! whether filter should be flipped (i.e. is CONVOLUTION)
  82. should_flip,
  83. group, //!< number of groups
  84. icpg, //!< input channels per group
  85. ocpg, //!< output channels per group
  86. spatial_ndim, stride[MAX_SPATIAL_DIM], padding[MAX_SPATIAL_DIM],
  87. //! spatial dim
  88. spatial[MAX_SPATIAL_DIM], dilation[MAX_SPATIAL_DIM],
  89. //! spatial dim with dilation applied
  90. dilated_spatial[MAX_SPATIAL_DIM];
  91. //! T should be a ConvolutionBase<Z>::CanonizedFilterMeta
  92. template <typename T>
  93. void copy_from(const T& b) {
  94. dtype = b.dtype;
  95. format = b.format;
  96. should_flip = b.should_flip;
  97. group = b.group;
  98. icpg = b.icpg;
  99. ocpg = b.ocpg;
  100. spatial_ndim = b.spatial_ndim;
  101. memcpy(stride, b.stride, sizeof(stride));
  102. memcpy(padding, b.padding, sizeof(padding));
  103. memcpy(spatial, b.spatial, sizeof(spatial));
  104. memcpy(dilation, b.dilation, sizeof(dilation));
  105. memcpy(dilated_spatial, b.dilated_spatial, sizeof(dilated_spatial));
  106. }
  107. bool operator==(const CanonizedFilterMeta& b) const {
  108. bool flag = true;
  109. flag = flag && (format == b.format);
  110. flag = flag && (dtype == b.dtype);
  111. flag = flag && (should_flip == b.should_flip);
  112. flag = flag && (group == b.group);
  113. flag = flag && (icpg == b.icpg);
  114. flag = flag && (ocpg == b.ocpg);
  115. flag = flag && (spatial_ndim == b.spatial_ndim);
  116. if (flag) {
  117. for (uint32_t i = 0; i < spatial_ndim; ++i) {
  118. flag = flag && (stride[i] == b.stride[i]);
  119. flag = flag && (padding[i] == b.padding[i]);
  120. flag = flag && (spatial[i] == b.spatial[i]);
  121. flag = flag && (dilation[i] == b.dilation[i]);
  122. flag = flag && (dilated_spatial[i] == b.dilated_spatial[i]);
  123. }
  124. }
  125. return flag;
  126. }
  127. };
  128. using PreprocessedFilter = detail::PreprocessedFilter;
  129. protected:
  130. // Check or deduce output DType
  131. void check_or_deduce_dtype_fwd(DType src, DType filter, DType& dst) const;
  132. CanonizedFilterMeta deduce_layout_fwd(const TensorLayout& src,
  133. const TensorLayout& filter,
  134. TensorLayout& dst) const;
  135. CanonizedFilterMeta check_layout_fwd(const TensorLayout& src,
  136. const TensorLayout& filter,
  137. const TensorLayout& dst) const;
  138. CanonizedFilterMeta make_canonized_filter_meta(
  139. size_t src_ndim, const TensorLayout& filter) const;
  140. };
  141. class MaskPropagate : public OperatorBase {
  142. DEF_OPR_IMPL(MaskPropagate, OperatorBase, 1, 1);
  143. DEF_OPR_PARAM(MaskPropagate);
  144. public:
  145. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_out dst,
  146. _megdnn_workspace workspace) = 0;
  147. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  148. const TensorLayout& dst) = 0;
  149. void deduce_layout(const TensorLayout& src, TensorLayout& dst);
  150. };
  151. /**
  152. * \brief ConvolutionForward Operator with 0/1 Mask matrix
  153. */
  154. class MaskConvForward : public ConvolutionBase<param::Convolution> {
  155. DEF_OPR_IMPL(MaskConvForward, ConvolutionBase, 3, 1);
  156. public:
  157. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
  158. _megdnn_tensor_in mask, _megdnn_tensor_out dst,
  159. _megdnn_workspace worksapce) = 0;
  160. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  161. const TensorLayout& filter,
  162. const TensorLayout& mask,
  163. const TensorLayout& dst) = 0;
  164. void deduce_dtype(DType src, DType filter, DType mask, DType& dst);
  165. void deduce_layout(const TensorLayout& src, const TensorLayout& filter,
  166. const TensorLayout& mask, TensorLayout& dst);
  167. protected:
  168. CanonizedFilterMeta check_exec(const TensorLayout& src,
  169. const TensorLayout& filter,
  170. const TensorLayout& mask,
  171. const TensorLayout& dst,
  172. size_t workspace_in_bytes);
  173. };
  174. using MaskConvolution = MaskConvForward;
  175. /**
  176. * \brief ConvolutionForward operator.
  177. */
  178. class ConvolutionForward : public ConvolutionBase<param::Convolution>,
  179. public detail::MultiAlgoOpr<ConvolutionForward, 3> {
  180. DEF_OPR_IMPL(ConvolutionForward, ConvolutionBase, 2, 1);
  181. public:
  182. /**
  183. * \param[in] src (n, ic, ih, iw)
  184. * \param[in] filter (oc, ic, fh, fw)
  185. * \param[out] dst (n, oc, oh, ow)
  186. */
  187. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
  188. _megdnn_tensor_out dst,
  189. const PreprocessedFilter* preprocessed_filter,
  190. _megdnn_workspace workspace) = 0;
  191. virtual void exec_preprocess(const TensorLayout& src_layout,
  192. _megdnn_tensor_in filter,
  193. const TensorLayout& dst_layout,
  194. PreprocessedFilter* preprocessed_filter,
  195. _megdnn_workspace workspace) = 0;
  196. void deduce_dtype(DType src, DType filter, DType& dst);
  197. void deduce_layout(const TensorLayout& src, const TensorLayout& filter,
  198. TensorLayout& dst);
  199. virtual size_t get_workspace_in_bytes(
  200. const TensorLayout& src, const TensorLayout& filter,
  201. const TensorLayout& dst,
  202. const PreprocessedFilter* preprocessed_filter) = 0;
  203. virtual SmallVector<TensorLayout> deduce_preprocessed_filter_layout(
  204. const TensorLayout& src, const TensorLayout& filter,
  205. const TensorLayout& dst) = 0;
  206. virtual size_t get_preprocess_workspace_in_bytes(
  207. const TensorLayout& src, const TensorLayout& filter,
  208. const TensorLayout& dst) = 0;
  209. protected:
  210. CanonizedFilterMeta check_exec(
  211. const TensorLayout& src, const TensorLayout& filter,
  212. const TensorLayout& dst, size_t workspace_in_bytes,
  213. const PreprocessedFilter* preprocessed_filter);
  214. };
  215. using Convolution = ConvolutionForward;
  216. /**
  217. * \brief ConvolutionBackwardData operator.
  218. *
  219. * Calculating the gradient wrt. convolution input data.
  220. */
  221. class ConvolutionBackwardData
  222. : public ConvolutionBase<param::Convolution>,
  223. public detail::MultiAlgoOpr<ConvolutionBackwardData, 3> {
  224. DEF_OPR_IMPL(ConvolutionBackwardData, ConvolutionBase, 2, 1);
  225. public:
  226. /**
  227. * \param[in] filter (oc, ic, fh, fw)
  228. * \param[in] diff (n, oc, oh, ow)
  229. * \param[out] grad (n, ic, ih, iw)
  230. */
  231. virtual void exec(_megdnn_tensor_in filter, _megdnn_tensor_in diff,
  232. _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
  233. virtual size_t get_workspace_in_bytes(const TensorLayout& filter,
  234. const TensorLayout& diff,
  235. const TensorLayout& grad) = 0;
  236. void deduce_dtype(DType filter, DType diff, DType& grad);
  237. void deduce_layout(const TensorLayout& filter, const TensorLayout& diff,
  238. TensorLayout& grad);
  239. protected:
  240. CanonizedFilterMeta check_exec(const TensorLayout& filter,
  241. const TensorLayout& diff,
  242. const TensorLayout& grad,
  243. size_t workspace_in_bytes);
  244. };
  245. /**
  246. * \brief ConvolutionBackwardFilter operator.
  247. *
  248. * Calculating the gradient wrt. convolution filter.
  249. */
  250. class ConvolutionBackwardFilter
  251. : public ConvolutionBase<param::Convolution>,
  252. public detail::MultiAlgoOpr<ConvolutionBackwardFilter, 3> {
  253. DEF_OPR_IMPL(ConvolutionBackwardFilter, ConvolutionBase, 2, 1);
  254. public:
  255. /**
  256. * \param[in] src (n, ic, ih, iw)
  257. * \param[in] diff (n, oc, oh, ow)
  258. * \param[out] grad (oc, ic, fh, fw)
  259. */
  260. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in diff,
  261. _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
  262. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  263. const TensorLayout& diff,
  264. const TensorLayout& grad) = 0;
  265. protected:
  266. CanonizedFilterMeta check_exec(const TensorLayout& src,
  267. const TensorLayout& diff,
  268. const TensorLayout& grad,
  269. size_t workspace_in_bytes);
  270. };
  271. /**
  272. * \brief ConvolutionBias operator
  273. */
  274. class ConvBiasForward : public ConvolutionBase<param::ConvBias>,
  275. public detail::MultiAlgoOpr<ConvBiasForward, 5> {
  276. DEF_OPR_IMPL(ConvBiasForward, ConvolutionBase, 4, 1);
  277. public:
  278. /**
  279. * \param[in] src (n, ic, ih, iw) or (n, ih, iw, ic)
  280. * \param[in] filter (oc, ic, fh, fw) or (oc, fh, fw, ic) or (oc/4, fh, fw,
  281. * 4 * ic)
  282. * \param[in] bias (1, oc, 1, 1)
  283. * \param[in] z same as dst
  284. * \param[out] dst (n, oc, oh, ow) or (n, oh, ow, oc)
  285. *
  286. * \note if the format is NCHW_WINOGRAD, the filter layout is (alphah,
  287. * alphaw, oc, ic)
  288. */
  289. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
  290. _megdnn_tensor_in bias, _megdnn_tensor_in z,
  291. _megdnn_tensor_out dst,
  292. const PreprocessedFilter* preprocessed_filter,
  293. _megdnn_workspace workspace) = 0;
  294. virtual void exec_preprocess(const TensorLayout& src_layout,
  295. _megdnn_tensor_in filter,
  296. const TensorLayout& bias_layout,
  297. const TensorLayout& z_layout,
  298. const TensorLayout& dst_layout,
  299. PreprocessedFilter* preprocessed_filter,
  300. _megdnn_workspace workspace) = 0;
  301. void deduce_dtype(DType src, DType filter, DType bias, DType z, DType& dst);
  302. void deduce_layout(const TensorLayout& src, const TensorLayout& filter,
  303. const TensorLayout& bias, const TensorLayout& z,
  304. TensorLayout& dst);
  305. virtual size_t get_workspace_in_bytes(
  306. const TensorLayout& src, const TensorLayout& filter,
  307. const TensorLayout& bias, const TensorLayout& z,
  308. const TensorLayout& dst,
  309. const PreprocessedFilter* preprocessed_filter) = 0;
  310. virtual size_t get_preprocess_workspace_in_bytes(
  311. const TensorLayout& src, const TensorLayout& filter,
  312. const TensorLayout& bias, const TensorLayout& z,
  313. const TensorLayout& dst) = 0;
  314. virtual SmallVector<TensorLayout> deduce_preprocessed_filter_layout(
  315. const TensorLayout& src, const TensorLayout& filter,
  316. const TensorLayout& bias, const TensorLayout& z,
  317. const TensorLayout& dst) = 0;
  318. static void deduce_winograd_origin_layout_and_param(
  319. const Param::Format format, const size_t output_block_size,
  320. const TensorLayout& src_layout,
  321. const TensorLayout& winograd_filter_layout,
  322. TensorLayout& origin_layout, Param& origin_param);
  323. enum class BiasMode : uint32_t {
  324. NO_BIAS = 0, //!< no bias
  325. BROADCAST_CHANNEL_BIAS, //!< broadcast channel bias, [1, c, 1, 1]
  326. BIAS //!< [N, C, H, W]
  327. };
  328. //! param for winograd algos.
  329. struct WinogradParam {
  330. uint32_t channel_block_size;
  331. uint32_t output_block_size;
  332. uint32_t tile_size;
  333. bool operator==(const WinogradParam& rhs) const {
  334. return channel_block_size == rhs.channel_block_size &&
  335. output_block_size == rhs.output_block_size &&
  336. tile_size == rhs.tile_size;
  337. }
  338. std::string to_string() const;
  339. };
  340. static constexpr WinogradParam INVALID_WINOGRAD_PARAM = {0, 0, 0};
  341. struct DirectParam {
  342. std::string to_string() const { return ""; }
  343. };
  344. struct MatmulParam {
  345. std::string to_string() const { return ""; }
  346. };
  347. struct DefaultParam {
  348. std::string to_string() const { return ""; }
  349. };
  350. //! get algo name, the format is ParamTrait<T>::category:base:p.to_string()
  351. //! \warning: base must not contain :.
  352. template <typename T>
  353. static std::string algo_name(
  354. const std::string& base, const T& p,
  355. param::ConvBias::Format format = param::ConvBias::Format::NCHW);
  356. /*!
  357. * \brief parse algo_name and get WinogradParam from algo name.
  358. *
  359. * \param algo name string
  360. * \return WinogradParam parsed from algo name, use pattern
  361. * winograd:base:m:tile_size.
  362. *
  363. * \warning: INVALID_WINOGRAD_PARAM returns if the algo_name is not matched.
  364. */
  365. static WinogradParam parse_winograd_name(const std::string& algo_name);
  366. /**
  367. * @brief find if there is nchw_nchwxx conv kernel optimized for argment,
  368. * nchw44 used for arm, nchw88 used for x86
  369. *
  370. * @param src_dtype conv feature map data type
  371. * @param filter_dtype conv filter or weight data type
  372. * @param dst_dtype output data type
  373. * @param fm filter meta param
  374. * @param bias_mode bias mode, no_bias or broadcast or bias
  375. * @param nonline_mode identity or relu or h_swish or sigmoid
  376. * @return true, found a kernel
  377. * @return false, can`t found any kernel
  378. */
  379. static bool is_nchw_nchwxx_optimized(
  380. const DTypeEnum src_dtype, const DTypeEnum filter_dtype,
  381. const DTypeEnum dst_dtype,
  382. const ConvolutionBase<param::Convolution>::CanonizedFilterMeta& fm,
  383. const ConvBiasForward::BiasMode bias_mode,
  384. const param::ConvBias::NonlineMode nonline_mode);
  385. protected:
  386. CanonizedFilterMeta check_exec(
  387. const TensorLayout& src, const TensorLayout& filter,
  388. const TensorLayout& bias, const TensorLayout& z,
  389. const TensorLayout& dst, size_t workspace_in_bytes,
  390. const PreprocessedFilter* preprocessed_filter);
  391. };
  392. using ConvBias = ConvBiasForward;
  393. /**
  394. * \brief base class for Conv - Nonline - Pooling
  395. */
  396. class ConvPoolingBase : public OperatorBase {
  397. DEF_OPR_IMPL_CTOR(ConvPoolingBase, OperatorBase);
  398. /**
  399. * \ Param::Method: Two methods to fetch the input data.
  400. * Default methods is WITH_TEXTURE_OBJ.
  401. * If you want to use WITH_SHARED_MEM mode,
  402. * please make sure that the size of
  403. * [ all of the fliter kernels + a channel
  404. * of input data + a channel of output data]
  405. * should be no large than 38KB.
  406. * And the pooling mode should not be "MAX".
  407. */
  408. DEF_OPR_PARAM(ConvPooling);
  409. protected:
  410. virtual void deduce_layout(const TensorLayout& src,
  411. const TensorLayout& filter,
  412. const TensorLayout& bias, TensorLayout& dst) = 0;
  413. virtual void check_layout(const TensorLayout& src,
  414. const TensorLayout& filter,
  415. const TensorLayout& bias, TensorLayout& dst,
  416. size_t workspace_limit_in_bytes) = 0;
  417. };
  418. class ConvPoolingForward : public ConvPoolingBase {
  419. DEF_OPR_IMPL(ConvPoolingForward, ConvPoolingBase, 2, 1);
  420. public:
  421. /**
  422. * \param[in] src input tensor
  423. * \param[out] dst output tensor
  424. */
  425. virtual void exec(const _megdnn_in TensorND src,
  426. const _megdnn_in TensorND filter,
  427. const _megdnn_in TensorND bias, _megdnn_out TensorND dst,
  428. _megdnn_out Workspace workspace) = 0;
  429. virtual void deduce_layout(const TensorLayout& src,
  430. const TensorLayout& filter,
  431. const TensorLayout& bias, TensorLayout& dst) = 0;
  432. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  433. const TensorLayout& filter,
  434. const TensorLayout& bias,
  435. const TensorLayout& dst) = 0;
  436. protected:
  437. virtual void check_layout(const TensorLayout& src,
  438. const TensorLayout& filter,
  439. const TensorLayout& bias, TensorLayout& dst,
  440. size_t workspace_limit_in_bytes) = 0;
  441. };
  442. using ConvPooling = ConvPoolingForward;
  443. class GroupLocalBase : public OperatorBase {
  444. DEF_OPR_IMPL_CTOR(GroupLocalBase, OperatorBase);
  445. DEF_OPR_PARAM(Convolution);
  446. public:
  447. using Mode = Param::Mode;
  448. protected:
  449. void deduce_layout_fwd(const TensorLayout& src, const TensorLayout& filter,
  450. TensorLayout& dst);
  451. void check_layout_fwd(const TensorLayout& src, const TensorLayout& filter,
  452. const TensorLayout& dst);
  453. };
  454. class GroupLocalForward : public GroupLocalBase {
  455. DEF_OPR_IMPL(GroupLocalForward, GroupLocalBase, 2, 1);
  456. public:
  457. /**
  458. * \param[in] src (N, IC, IH, IW)
  459. * \param[in] filter (G, OH, OW, IC/G, FH, FW, OC/G)
  460. * \param[out] dst (N, OC, OH, OW)
  461. **/
  462. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
  463. _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;
  464. void deduce_layout(const TensorLayout& src, const TensorLayout& filter,
  465. TensorLayout& dst) {
  466. deduce_layout_fwd(src, filter, dst);
  467. }
  468. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  469. const TensorLayout& filter,
  470. const TensorLayout& dst) = 0;
  471. protected:
  472. void check_exec(const TensorLayout& src, const TensorLayout& filter,
  473. const TensorLayout& dst, size_t workspace_in_bytes);
  474. };
  475. using GroupLocal = GroupLocalForward;
  476. class GroupLocalBackwardData : public GroupLocalBase {
  477. DEF_OPR_IMPL(GroupLocalBackwardData, GroupLocalBase, 2, 1);
  478. public:
  479. virtual void exec(_megdnn_tensor_in filter, _megdnn_tensor_in diff,
  480. _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
  481. virtual size_t get_workspace_in_bytes(const TensorLayout& filter,
  482. const TensorLayout& diff,
  483. const TensorLayout& grad) = 0;
  484. protected:
  485. void check_exec(const TensorLayout& filter, const TensorLayout& diff,
  486. const TensorLayout& grad, size_t workspace_in_bytes);
  487. };
  488. class GroupLocalBackwardFilter : public GroupLocalBase {
  489. DEF_OPR_IMPL(GroupLocalBackwardFilter, GroupLocalBase, 2, 1);
  490. public:
  491. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in diff,
  492. _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
  493. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  494. const TensorLayout& diff,
  495. const TensorLayout& grad) = 0;
  496. protected:
  497. void check_exec(const TensorLayout& filter, const TensorLayout& diff,
  498. const TensorLayout& grad, size_t workspace_in_bytes);
  499. };
  500. class Images2NeibsBase : public OperatorBase {
  501. DEF_OPR_IMPL_CTOR(Images2NeibsBase, OperatorBase);
  502. DEF_OPR_PARAM(Images2Neibs);
  503. protected:
  504. void deduce_layout_fwd(const TensorLayout& src, TensorLayout& dst);
  505. void check_layout_fwd(const TensorLayout& filter, const TensorLayout& dst);
  506. };
  507. class Images2NeibsForward : public Images2NeibsBase {
  508. DEF_OPR_IMPL(Images2NeibsForward, Images2NeibsBase, 1, 1);
  509. public:
  510. /**
  511. * \param[in] src (N, C, IH, IW)
  512. * \param[out] dst (N, C, OH, OW, window_h, window_w)
  513. *
  514. * \see
  515. * http://deeplearning.net/software/theano/library/tensor/nnet/neighbours.html
  516. *
  517. * \f$ dst_{n, c, oh, ow, wh, ww} = src_{n, c, ih+wh, iw+fw}\f$,
  518. * where \f$ ih=-pad_h+oh*stride_h, iw=-pad_w+ow*stride_w\f$.
  519. */
  520. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_out dst,
  521. _megdnn_workspace workspace) = 0;
  522. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  523. const TensorLayout& dst) = 0;
  524. void deduce_layout(const TensorLayout& src, TensorLayout& dst);
  525. protected:
  526. void check_exec(const TensorLayout& src, const TensorLayout& dst,
  527. size_t workspace_in_bytes);
  528. };
  529. using Images2Neibs = Images2NeibsForward;
  530. class Images2NeibsBackward : public Images2NeibsBase {
  531. DEF_OPR_IMPL(Images2NeibsBackward, Images2NeibsBase, 1, 1);
  532. public:
  533. /**
  534. * \param[in] diff the backpropagated gradient wrt. dst
  535. * \param[out] grad the backpropagated gradient wrt. src
  536. */
  537. virtual void exec(_megdnn_tensor_in diff, _megdnn_tensor_out grad,
  538. _megdnn_workspace workspace) = 0;
  539. virtual size_t get_workspace_in_bytes(const TensorLayout& diff,
  540. const TensorLayout& grad) = 0;
  541. protected:
  542. void check_exec(const TensorLayout& diff, const TensorLayout& grad,
  543. size_t workspace_in_bytes);
  544. };
  545. /**
  546. * \brief base class for Pooling
  547. */
  548. class PoolingBase : public OperatorBase {
  549. DEF_OPR_IMPL_CTOR(PoolingBase, OperatorBase);
  550. DEF_OPR_PARAM(Pooling);
  551. public:
  552. using Mode = Param::Mode;
  553. protected:
  554. void deduce_layout_fwd(const TensorLayout& src, TensorLayout& dst);
  555. void check_layout_fwd(const TensorLayout& src, const TensorLayout& dst);
  556. };
  557. class PoolingForward : public PoolingBase {
  558. DEF_OPR_IMPL(PoolingForward, PoolingBase, 1, 1);
  559. public:
  560. /**
  561. * \param[in] src input tensor
  562. * \param[out] dst output tensor
  563. */
  564. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_out dst,
  565. _megdnn_workspace workspace) = 0;
  566. void deduce_layout(const TensorLayout& src, TensorLayout& dst);
  567. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  568. const TensorLayout& dst) = 0;
  569. protected:
  570. void check_exec(const TensorLayout& src, const TensorLayout& dst,
  571. size_t workspace_in_bytes);
  572. };
  573. using Pooling = PoolingForward;
  574. class PoolingBackward : public PoolingBase {
  575. DEF_OPR_IMPL(PoolingBackward, PoolingBase, 3, 1);
  576. public:
  577. /**
  578. * \param[in] src the `src' parameter in PoolingForward::exec
  579. * \param[in] dst the `dst' parameter in PoolingForward::exec
  580. * \param[in] diff the backpropagated gradient wrt. dst
  581. * \param[out] grad the backpropagated gradient wrt. src
  582. */
  583. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in dst,
  584. _megdnn_tensor_in diff, _megdnn_tensor_out grad,
  585. _megdnn_workspace workspace) = 0;
  586. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  587. const TensorLayout& dst,
  588. const TensorLayout& diff,
  589. const TensorLayout& grad) = 0;
  590. protected:
  591. void check_exec(const TensorLayout& src, const TensorLayout& dst,
  592. const TensorLayout& diff, const TensorLayout& grad,
  593. size_t workspace_in_bytes);
  594. };
  595. /**
  596. * \brief base class for Local
  597. */
  598. class LocalBase : public OperatorBase {
  599. DEF_OPR_IMPL_CTOR(LocalBase, OperatorBase);
  600. DEF_OPR_PARAM(Convolution);
  601. public:
  602. using Mode = Param::Mode;
  603. protected:
  604. void deduce_layout_fwd(const TensorLayout& src, const TensorLayout& filter,
  605. TensorLayout& dst);
  606. void check_layout_fwd(const TensorLayout& src, const TensorLayout& filter,
  607. const TensorLayout& dst);
  608. };
  609. class LocalForward : public LocalBase {
  610. DEF_OPR_IMPL(LocalForward, LocalBase, 2, 1);
  611. public:
  612. /**
  613. * \param[in] src (n, ic, ih, iw)
  614. * \param[in] filter (oh, ow, ic, fh, fw, oc)
  615. * \param[out] dst (n, oc, oh, ow)
  616. */
  617. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
  618. _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;
  619. /**
  620. * \brief Deducing output tensor layouts from input tensor layouts.
  621. *
  622. * Be aware that the first and second dimension of `filter' are ignored
  623. * when deducing `dst' layout.
  624. */
  625. void deduce_layout(const TensorLayout& src, const TensorLayout& filter,
  626. TensorLayout& dst);
  627. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  628. const TensorLayout& filter,
  629. const TensorLayout& dst) = 0;
  630. protected:
  631. void check_exec(const TensorLayout& src, const TensorLayout& filter,
  632. const TensorLayout& dst, size_t workspace_in_bytes);
  633. };
  634. using Local = LocalForward;
  635. class LocalBackwardData : public LocalBase {
  636. DEF_OPR_IMPL(LocalBackwardData, LocalBase, 2, 1);
  637. public:
  638. /**
  639. * \param[in] filter (oh, ow, ic, fh, fw, oc)
  640. * \param[in] diff (n, oc, oh, ow)
  641. * \param[out] grad (n, ic, ih, iw)
  642. */
  643. virtual void exec(_megdnn_tensor_in filter, _megdnn_tensor_in diff,
  644. _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
  645. virtual size_t get_workspace_in_bytes(const TensorLayout& filter,
  646. const TensorLayout& diff,
  647. const TensorLayout& grad) = 0;
  648. protected:
  649. void check_exec(const TensorLayout& filter, const TensorLayout& diff,
  650. const TensorLayout& grad, size_t workspace_in_bytes);
  651. };
  652. class LocalBackwardFilter : public LocalBase {
  653. DEF_OPR_IMPL(LocalBackwardFilter, LocalBase, 2, 1);
  654. public:
  655. /**
  656. * \param[in] src (n, ic, ih, iw)
  657. * \param[in] diff (n, oc, oh, ow)
  658. * \param[out] grad (oh, ow, ic, fh, fw, oc)
  659. */
  660. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in diff,
  661. _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
  662. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  663. const TensorLayout& diff,
  664. const TensorLayout& grad) = 0;
  665. protected:
  666. void check_exec(const TensorLayout& src, const TensorLayout& diff,
  667. const TensorLayout& grad, size_t workspace_in_bytes);
  668. };
  669. class BNBase : public OperatorBase {
  670. DEF_OPR_IMPL_CTOR(BNBase, OperatorBase);
  671. DEF_OPR_PARAM(BN);
  672. protected:
  673. void check_param();
  674. };
  675. class BNForward : public BNBase {
  676. DEF_OPR_IMPL(BNForward, BNBase, 6, 5);
  677. public:
  678. /**
  679. * \dst[i] = gemma
  680. * *(x[i]-estimatedMean[k])/sqrt(epsilon+estimatedVariance[k]) + beta \where
  681. * epsilon is a very small value to avoid a "divide by zero" error.
  682. * \param[in] src (n, c, h, w)
  683. * \param[out] dst (n, c, h, w)
  684. * \param[out] mean (see m_param.ParamDim) Global mean.
  685. * \param[out] variance (see m_param.ParamDim) Global variance.
  686. * \Param[out] batch_mean (see m_param.ParamDim)
  687. * Optionally cached intermediate mean from forward pass
  688. * \Param[out] batch_inv_variance (see m_param.ParamDim)
  689. * Optionally cached intermediate variance from forward pass
  690. * src and dst must have the same shape.
  691. * src and dst must be contiguous.
  692. */
  693. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in bn_scale,
  694. _megdnn_tensor_in bn_bias, _megdnn_tensor_inout mean,
  695. _megdnn_tensor_inout variance,
  696. _megdnn_tensor_out batch_mean,
  697. _megdnn_tensor_out batch_inv_variance,
  698. _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;
  699. void deduce_layout(const TensorLayout& src, TensorLayout& bn_scale,
  700. TensorLayout& bn_bias, TensorLayout& mean,
  701. TensorLayout& variance, TensorLayout& batch_mean,
  702. TensorLayout& batch_inv_variance, TensorLayout& dst);
  703. virtual size_t get_workspace_in_bytes(
  704. const TensorLayout& src, const TensorLayout& bn_scale,
  705. const TensorLayout& bn_bias, const TensorLayout& mean,
  706. const TensorLayout& variance, const TensorLayout& batch_mean,
  707. const TensorLayout& batch_inv_variance,
  708. const TensorLayout& dst) = 0;
  709. protected:
  710. void check_exec(const TensorLayout& src, const TensorLayout& bn_scale,
  711. const TensorLayout& bn_bias, const TensorLayout& mean,
  712. const TensorLayout& variance,
  713. const TensorLayout& batch_mean,
  714. const TensorLayout& batch_inv_variance,
  715. const TensorLayout& dst, size_t workspace_in_bytes);
  716. };
  717. using BN = BNForward;
  718. class BNBackward : public BNBase {
  719. DEF_OPR_IMPL(BNBackward, BNBase, 5, 3);
  720. public:
  721. /**
  722. * \param[in] input data of forwarding propagate.
  723. * \param[in] dy the backpropagated gradient of y.
  724. * \param[out] dx the backpropagated gradient of x.
  725. * \param[out] d_bn_scale, the backpropagated gradient of bn_scale.
  726. * \param[out] d_bn_bias, the backpropagated gradient of bn_bias.
  727. * Optionally cached intermediate results from forward pass
  728. * \param[in] saved_batch_mean mean of the input batch.
  729. Calculated in the forwardpropagation.
  730. * \param[in] saved_batch_variance of the input batch.
  731. Calculated in the forwardpropagation.
  732. */
  733. virtual void exec(_megdnn_tensor_in x, _megdnn_tensor_in dy,
  734. _megdnn_tensor_in saved_batch_mean,
  735. _megdnn_tensor_in saved_batch_variance,
  736. _megdnn_tensor_in bn_scale, _megdnn_tensor_out d_bn_scale,
  737. _megdnn_tensor_out d_bn_bias, _megdnn_tensor_out dx,
  738. _megdnn_workspace workspace) = 0;
  739. virtual size_t get_workspace_in_bytes(
  740. const TensorLayout& x, const TensorLayout& dy,
  741. const TensorLayout& saved_batch_mean,
  742. const TensorLayout& saved_batch_variance,
  743. const TensorLayout& bn_scale, const TensorLayout& d_bn_scale,
  744. const TensorLayout& d_bn_bias, const TensorLayout& dx) = 0;
  745. protected:
  746. void check_exec(const TensorLayout& x, const TensorLayout& dy,
  747. const TensorLayout& saved_batch_mean,
  748. const TensorLayout& saved_batch_variance,
  749. const TensorLayout& bn_scale,
  750. const TensorLayout& d_bn_scale,
  751. const TensorLayout& d_bn_bias, const TensorLayout& dx,
  752. size_t workspace_in_bytes);
  753. };
  754. class LRNBase : public OperatorBase {
  755. DEF_OPR_IMPL_CTOR(LRNBase, OperatorBase);
  756. DEF_OPR_PARAM(LRN);
  757. protected:
  758. void check_param();
  759. };
  760. class LRNForward : public LRNBase {
  761. DEF_OPR_IMPL(LRNForward, LRNBase, 1, 1);
  762. public:
  763. /**
  764. * \see ImageNet Classification with Deep Convolutional Neural Networks
  765. * \param[in] src (n, c, h, w)
  766. * \param[out] dst (n, c, h, w)
  767. *
  768. * src and dst must have the same shape.
  769. * src and dst must be contiguous.
  770. */
  771. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_out dst,
  772. _megdnn_workspace workspace) = 0;
  773. void deduce_layout(const TensorLayout& src, TensorLayout& dst);
  774. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  775. const TensorLayout& dst) = 0;
  776. protected:
  777. void check_exec(const TensorLayout& src, const TensorLayout& dst,
  778. size_t workspace_in_bytes);
  779. };
  780. using LRN = LRNForward;
  781. class LRNBackward : public LRNBase {
  782. DEF_OPR_IMPL(LRNBackward, LRNBase, 3, 1);
  783. public:
  784. /**
  785. * \param[in] src the `src' parameter in LRNForward::exec
  786. * \param[in] dst the `dst' parameter in LRNForward::exec
  787. * \param[in] diff the backpropagated gradient wrt. dst
  788. * \param[out] grad the backpropagated gradient wrt. src
  789. *
  790. * All tensors should be contiguous and of the same shape.
  791. */
  792. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in dst,
  793. _megdnn_tensor_in diff, _megdnn_tensor_out grad,
  794. _megdnn_workspace workspace) = 0;
  795. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  796. const TensorLayout& dst,
  797. const TensorLayout& diff,
  798. const TensorLayout& grad) = 0;
  799. protected:
  800. void check_exec(const TensorLayout& src, const TensorLayout& dst,
  801. const TensorLayout& diff, const TensorLayout& grad,
  802. size_t workspace_in_bytes);
  803. };
  804. class ROIPoolingBase : public OperatorBase {
  805. DEF_OPR_IMPL_CTOR(ROIPoolingBase, OperatorBase);
  806. DEF_OPR_PARAM(ROIPooling);
  807. protected:
  808. void check_layout_fwd(const TensorLayout& src, const TensorLayout& rois,
  809. const TensorLayout& dst, const TensorLayout& index);
  810. };
  811. class ROIPoolingForward : public ROIPoolingBase {
  812. DEF_OPR_IMPL(ROIPoolingForward, ROIPoolingBase, 2, 2);
  813. public:
  814. /**
  815. * \param[in] src (n, c, ih, iw)
  816. * \param[in] rois (m, 5)
  817. * \param[out] dst (m, c, oh, ow)
  818. * \param[out] index (m, c, oh, ow) if mode is MAX, (0) if mode is AVERAGE
  819. *
  820. * The internal implementation is akin to
  821. * https://github.com/rbgirshick/caffe-fast-rcnn .d
  822. * Note that rois(, 0) denotes the input image index. We store it as
  823. * a float, but it should be an integer instead.
  824. *
  825. * index is a temporary tensor to facilitate its backward operator.
  826. * It is used to store argmax indicex in MAX mode, and it is not used
  827. * in AVERAGE mode.
  828. */
  829. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in rois,
  830. _megdnn_tensor_out dst, _megdnn_tensor_out index,
  831. _megdnn_workspace workspace) = 0;
  832. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  833. const TensorLayout& rois,
  834. const TensorLayout& dst,
  835. const TensorLayout& index) = 0;
  836. protected:
  837. void check_exec(const TensorLayout& src, const TensorLayout& rois,
  838. const TensorLayout& dst, const TensorLayout& index,
  839. size_t workspace_in_bytes);
  840. };
  841. using ROIPooling = ROIPoolingForward;
  842. class ROIPoolingBackward : public ROIPoolingBase {
  843. DEF_OPR_IMPL(ROIPoolingBackward, ROIPoolingBase, 4, 1);
  844. public:
  845. /**
  846. * \param[in] diff the backpropagated gradient wrt. dst
  847. * \param[in] src the `src' parameter in ROIPoolingForward::exec
  848. * \param[in] rois the `rois' parameter in ROIPoolingForward::exec
  849. * \param[in] index the `index' parameter in ROIPoolingForward::exec
  850. * \param[out] grad the backpropagated gradient wrt. src
  851. */
  852. virtual void exec(_megdnn_tensor_in diff, _megdnn_tensor_in src,
  853. _megdnn_tensor_in rois, _megdnn_tensor_in index,
  854. _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
  855. virtual size_t get_workspace_in_bytes(const TensorLayout& diff,
  856. const TensorLayout& src,
  857. const TensorLayout& rois,
  858. const TensorLayout& index,
  859. const TensorLayout& grad) = 0;
  860. protected:
  861. void check_exec(const TensorLayout& diff, const TensorLayout& src,
  862. const TensorLayout& rois, const TensorLayout& index,
  863. const TensorLayout& grad, size_t workspace_in_bytes);
  864. };
  865. class Convolution3DBase : public OperatorBase {
  866. DEF_OPR_IMPL_CTOR(Convolution3DBase, OperatorBase);
  867. DEF_OPR_PARAM(Convolution3D);
  868. public:
  869. static constexpr size_t MAX_SPATIAL_DIM = 3;
  870. using Mode = Param::Mode;
  871. struct CanonizedFilterMeta {
  872. DTypeEnum dtype_enum;
  873. Param::Format format;
  874. uint32_t
  875. //! whether filter should be flipped (i.e. is CONVOLUTION)
  876. should_flip,
  877. group, //!< number of groups
  878. icpg, //!< input channels per group
  879. ocpg, //!< output channels per group
  880. spatial_ndim, stride[MAX_SPATIAL_DIM], padding[MAX_SPATIAL_DIM],
  881. //! spatial dim
  882. spatial[MAX_SPATIAL_DIM], dilation[MAX_SPATIAL_DIM],
  883. //! spatial dim with dilation applied
  884. dilated_spatial[MAX_SPATIAL_DIM];
  885. } MEGDNN_PACKED;
  886. protected:
  887. CanonizedFilterMeta deduce_layout_fwd(const TensorLayout& src,
  888. const TensorLayout& filter,
  889. TensorLayout& dst) const;
  890. CanonizedFilterMeta check_layout_fwd(const TensorLayout& src,
  891. const TensorLayout& filter,
  892. const TensorLayout& dst) const;
  893. CanonizedFilterMeta make_canonized_filter_meta(
  894. size_t src_ndim, const TensorLayout& filter) const;
  895. };
  896. class Convolution3DForward
  897. : public Convolution3DBase,
  898. public detail::MultiAlgoOpr<Convolution3DForward, 3> {
  899. DEF_OPR_IMPL(Convolution3DForward, Convolution3DBase, 2, 1);
  900. public:
  901. /**
  902. * \param[in] src (n, ic, id, ih, iw)
  903. * \param[in] filter (oc, ic, fd, fh, fw)
  904. * \param[out] dst (n, oc, od, oh, ow)
  905. */
  906. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
  907. _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;
  908. void deduce_layout(const TensorLayout& src, const TensorLayout& filter,
  909. TensorLayout& dst);
  910. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  911. const TensorLayout& filter,
  912. const TensorLayout& dst) = 0;
  913. protected:
  914. CanonizedFilterMeta check_exec(const TensorLayout& src,
  915. const TensorLayout& filter,
  916. const TensorLayout& dst,
  917. size_t workspace_in_bytes);
  918. };
  919. using Convolution3D = Convolution3DForward;
  920. class Convolution3DBackwardData
  921. : public Convolution3DBase,
  922. public detail::MultiAlgoOpr<Convolution3DBackwardData, 3> {
  923. DEF_OPR_IMPL(Convolution3DBackwardData, Convolution3DBase, 2, 1);
  924. public:
  925. /**
  926. * \param[in] filter (oc, ic, fd, fh, fw)
  927. * \param[in] diff (n, oc, od, oh, ow)
  928. * \param[out] grad (n, ic, id, ih, iw)
  929. */
  930. virtual void exec(_megdnn_tensor_in filter, _megdnn_tensor_in diff,
  931. _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
  932. virtual size_t get_workspace_in_bytes(const TensorLayout& filter,
  933. const TensorLayout& diff,
  934. const TensorLayout& grad) = 0;
  935. void deduce_layout(const TensorLayout& filter, const TensorLayout& diff,
  936. TensorLayout& grad);
  937. protected:
  938. CanonizedFilterMeta check_exec(const TensorLayout& filter,
  939. const TensorLayout& diff,
  940. const TensorLayout& grad,
  941. size_t workspace_in_bytes);
  942. };
  943. class Convolution3DBackwardFilter
  944. : public Convolution3DBase,
  945. public detail::MultiAlgoOpr<Convolution3DBackwardFilter, 3> {
  946. DEF_OPR_IMPL(Convolution3DBackwardFilter, Convolution3DBase, 2, 1);
  947. public:
  948. /**
  949. * \param[in] src (n, ic, id, ih, iw)
  950. * \param[in] diff (n, oc, od, oh, ow)
  951. * \param[out] grad (oc, ic, fd, fh, fw)
  952. */
  953. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in diff,
  954. _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
  955. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  956. const TensorLayout& diff,
  957. const TensorLayout& grad) = 0;
  958. protected:
  959. CanonizedFilterMeta check_exec(const TensorLayout& src,
  960. const TensorLayout& diff,
  961. const TensorLayout& grad,
  962. size_t workspace_in_bytes);
  963. };
  964. class LocalShareBase : public OperatorBase {
  965. DEF_OPR_IMPL_CTOR(LocalShareBase, OperatorBase);
  966. DEF_OPR_PARAM(LocalShare);
  967. protected:
  968. void deduce_layout_fwd(const TensorLayout& src, const TensorLayout& filter,
  969. TensorLayout& dst);
  970. void check_layout_fwd(const TensorLayout& src, const TensorLayout& filter,
  971. const TensorLayout& dst);
  972. };
  973. class LocalShareForward : public LocalShareBase,
  974. public detail::MultiAlgoOpr<LocalShareForward, 3> {
  975. DEF_OPR_IMPL(LocalShareForward, LocalShareBase, 2, 1);
  976. public:
  977. /**
  978. * \param[in] src (N, IC, IH, IW)
  979. * \param[in] filter (G, spatial_groups_h, spatial_groups_w, IC / G,
  980. * FH, FW, OC / G)
  981. * \param[out] dst (N, OC, OH, OW)
  982. */
  983. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
  984. _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;
  985. /**
  986. * \brief deduce layout of the ouput tensor
  987. */
  988. void deduce_layout(const TensorLayout& src, const TensorLayout& filter,
  989. TensorLayout& dst);
  990. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  991. const TensorLayout& filter,
  992. const TensorLayout& dst) = 0;
  993. protected:
  994. void check_exec(const TensorLayout& src, const TensorLayout& filter,
  995. const TensorLayout& dst, size_t workspace_in_bytes);
  996. };
  997. using LocalShare = LocalShareForward;
  998. class LocalShareBackwardData
  999. : public LocalShareBase,
  1000. public detail::MultiAlgoOpr<LocalShareBackwardData, 3> {
  1001. DEF_OPR_IMPL(LocalShareBackwardData, LocalShareBase, 2, 1);
  1002. public:
  1003. /**
  1004. * \param[in] filter (G, spatial_groups_h, spatial_groups_w, IC / G,
  1005. * FH, FW, OC / G)
  1006. * \param[in] diff (N, OC, OH, OW)
  1007. * \param[out] grad (N, IC, IH, IW)
  1008. */
  1009. virtual void exec(_megdnn_tensor_in filter, _megdnn_tensor_in diff,
  1010. _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
  1011. virtual size_t get_workspace_in_bytes(const TensorLayout& filter,
  1012. const TensorLayout& diff,
  1013. const TensorLayout& grad) = 0;
  1014. void deduce_layout(const TensorLayout& filter, const TensorLayout& diff,
  1015. TensorLayout& grad);
  1016. protected:
  1017. void check_exec(const TensorLayout& filter, const TensorLayout& diff,
  1018. const TensorLayout& grad, size_t workspace_in_bytes);
  1019. };
  1020. class LocalShareBackwardFilter
  1021. : public LocalShareBase,
  1022. public detail::MultiAlgoOpr<LocalShareBackwardFilter, 3> {
  1023. DEF_OPR_IMPL(LocalShareBackwardFilter, LocalShareBase, 2, 1);
  1024. public:
  1025. /**
  1026. * \param[in] src (N, IC, IH, IW)
  1027. * \param[in] diff (N, OC, OH, OW)
  1028. * \param[out] grad (G, spatial_groups_h, spatial_groups_w, IC / G,
  1029. * FH, FW, OC / G)
  1030. */
  1031. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in diff,
  1032. _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
  1033. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  1034. const TensorLayout& diff,
  1035. const TensorLayout& grad) = 0;
  1036. protected:
  1037. void check_exec(const TensorLayout& src, const TensorLayout& diff,
  1038. const TensorLayout& grad, size_t workspace_in_bytes);
  1039. };
  1040. class ROIAlignBase : public OperatorBase {
  1041. DEF_OPR_IMPL_CTOR(ROIAlignBase, OperatorBase);
  1042. DEF_OPR_PARAM(ROIAlign);
  1043. protected:
  1044. void deduce_layout_fwd(const TensorLayout& src, const TensorLayout& rois,
  1045. TensorLayout& dst, TensorLayout& index);
  1046. void check_layout_fwd(const TensorLayout& src, const TensorLayout& rois,
  1047. const TensorLayout& dst, const TensorLayout& index);
  1048. };
  1049. class ROIAlignForward : public ROIAlignBase {
  1050. DEF_OPR_IMPL(ROIAlignForward, ROIAlignBase, 2, 2);
  1051. public:
  1052. /**
  1053. * \param[in] src (n, c, ih, iw)
  1054. * \param[in] rois (m, 5)
  1055. * \param[out] dst (m, c, oh, ow)
  1056. * \param[out] index (m, c, oh, ow) if mode is MAX, (0) if mode is AVERAGE
  1057. *
  1058. * Note that rois(, 0) denotes the input image index. We store it as
  1059. * a float, but it should be an integer instead.
  1060. *
  1061. * index is a temporary tensor to facilitate its backward operator.
  1062. * It is used to store argmax indicex in MAX mode, and it is not used
  1063. * in AVERAGE mode.
  1064. */
  1065. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in rois,
  1066. _megdnn_tensor_out dst, _megdnn_tensor_out index,
  1067. _megdnn_workspace workspace) = 0;
  1068. void deduce_layout(const TensorLayout& src, const TensorLayout& rois,
  1069. TensorLayout& dst, TensorLayout& index);
  1070. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  1071. const TensorLayout& rois,
  1072. const TensorLayout& dst,
  1073. const TensorLayout& index) = 0;
  1074. protected:
  1075. void check_exec(const TensorLayout& src, const TensorLayout& rois,
  1076. const TensorLayout& dst, const TensorLayout& index,
  1077. size_t workspace_in_bytes);
  1078. };
  1079. using ROIAlign = ROIAlignForward;
  1080. class ROIAlignBackward : public ROIAlignBase {
  1081. DEF_OPR_IMPL(ROIAlignBackward, ROIAlignBase, 3, 1);
  1082. public:
  1083. /**
  1084. * \param[in] diff the backpropagated gradient wrt. dst
  1085. * \param[in] rois the `rois' parameter in ROIAlignForward::exec
  1086. * \param[in] index the `index' parameter in ROIAlignForward::exec
  1087. * \param[out] grad the backpropagated gradient wrt. src
  1088. */
  1089. virtual void exec(_megdnn_tensor_in diff, _megdnn_tensor_in rois,
  1090. _megdnn_tensor_in index, _megdnn_tensor_out grad,
  1091. _megdnn_workspace workspace) = 0;
  1092. virtual size_t get_workspace_in_bytes(const TensorLayout& diff,
  1093. const TensorLayout& rois,
  1094. const TensorLayout& index,
  1095. const TensorLayout& grad) = 0;
  1096. protected:
  1097. void check_exec(const TensorLayout& diff, const TensorLayout& rois,
  1098. const TensorLayout& index, const TensorLayout& grad,
  1099. size_t workspace_in_bytes);
  1100. };
  1101. class DeformableConvBase : public OperatorBase {
  1102. DEF_OPR_IMPL_CTOR(DeformableConvBase, OperatorBase);
  1103. DEF_OPR_PARAM(Convolution);
  1104. public:
  1105. static constexpr size_t MAX_SPATIAL_DIM = 2;
  1106. struct CanonizedFilterMeta : Convolution::CanonizedFilterMeta {
  1107. uint32_t deformable_group;
  1108. };
  1109. protected:
  1110. CanonizedFilterMeta make_canonized_filter_meta(
  1111. size_t src_ndim, const TensorLayout& filter,
  1112. const TensorLayout& offset) const;
  1113. void deduce_layout_fwd(const TensorLayout& im, const TensorLayout& filter,
  1114. const TensorLayout& mask, const TensorLayout& offset,
  1115. TensorLayout& dst);
  1116. void check_layout_fwd(const TensorLayout& src, const TensorLayout& filter,
  1117. const TensorLayout& mask, const TensorLayout& offset,
  1118. const TensorLayout& dst);
  1119. };
  1120. class DeformableConvForward
  1121. : public DeformableConvBase,
  1122. public detail::MultiAlgoOpr<DeformableConvForward, 5> {
  1123. DEF_OPR_IMPL(DeformableConvForward, DeformableConvBase, 4, 1);
  1124. public:
  1125. /**
  1126. * \param[in] im (n, ic, ih, iw)
  1127. * \param[in] filter (oc, ic, fh, fw)
  1128. * \param[in] offset (dg, 2, fh, fw, oh, ow)
  1129. * \param[in] mask (dg, fh, fw, oh, ow)
  1130. * \param[out] dst (n, oc, oh, ow)
  1131. */
  1132. virtual void exec(_megdnn_tensor_in im, _megdnn_tensor_in filter,
  1133. _megdnn_tensor_in offset, _megdnn_tensor_in mask,
  1134. _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;
  1135. void deduce_layout(const TensorLayout& im, const TensorLayout& filter,
  1136. const TensorLayout& offset, const TensorLayout& mask,
  1137. TensorLayout& dst);
  1138. virtual size_t get_workspace_in_bytes(const TensorLayout& im,
  1139. const TensorLayout& filter,
  1140. const TensorLayout& offset,
  1141. const TensorLayout& mask,
  1142. const TensorLayout& dst) = 0;
  1143. protected:
  1144. CanonizedFilterMeta check_exec(const TensorLayout& im,
  1145. const TensorLayout& filter,
  1146. const TensorLayout& offset,
  1147. const TensorLayout& mask,
  1148. const TensorLayout& dst,
  1149. size_t workspace_in_bytes);
  1150. };
  1151. using DeformableConv = DeformableConvForward;
  1152. /**
  1153. * \brief DeformableConvBackwardFilter operator.
  1154. *
  1155. * Calculating the gradient wrt. convolution filter.
  1156. */
  1157. class DeformableConvBackwardFilter
  1158. : public DeformableConvBase,
  1159. public detail::MultiAlgoOpr<DeformableConvBackwardFilter, 5> {
  1160. DEF_OPR_IMPL(DeformableConvBackwardFilter, DeformableConvBase, 4, 1);
  1161. public:
  1162. /**
  1163. * \param[in] im (oc, ic, fh, fw)
  1164. * \param[in] offset (dg, 2, fh, fw, oh, ow)
  1165. * \param[in] mask (dg, fh, fw, oh, ow)
  1166. * \param[in] out_grad (n, oc, oh, ow)
  1167. * \param[out] filter_grad (oc, ic, ih, iw)
  1168. */
  1169. virtual void exec(_megdnn_tensor_in im, _megdnn_tensor_in offset,
  1170. _megdnn_tensor_in mask, _megdnn_tensor_in out_grad,
  1171. _megdnn_tensor_out filter_grad,
  1172. _megdnn_workspace workspace) = 0;
  1173. virtual size_t get_workspace_in_bytes(const TensorLayout& im,
  1174. const TensorLayout& offset,
  1175. const TensorLayout& mask,
  1176. const TensorLayout& out_grad,
  1177. const TensorLayout& filter_grad) = 0;
  1178. void deduce_layout(const TensorLayout& im, const TensorLayout& offset,
  1179. const TensorLayout& mask, const TensorLayout& out_grad,
  1180. TensorLayout& filter_grad);
  1181. protected:
  1182. CanonizedFilterMeta check_exec(const TensorLayout& im,
  1183. const TensorLayout& offset,
  1184. const TensorLayout& mask,
  1185. const TensorLayout& out_grad,
  1186. const TensorLayout& filter_grad,
  1187. size_t workspace_in_bytes);
  1188. };
  1189. /**
  1190. * \brief DeformableConvBackwardData operator.
  1191. *
  1192. * Calculating the gradient wrt. convolution input data, offset and mask.
  1193. */
  1194. class DeformableConvBackwardData
  1195. : public DeformableConvBase,
  1196. public detail::MultiAlgoOpr<DeformableConvBackwardData, 8> {
  1197. DEF_OPR_IMPL(DeformableConvBackwardData, DeformableConvBase, 5, 3);
  1198. public:
  1199. /**
  1200. * \param[in] im (oc, ic, fh, fw)
  1201. * \param[in] filter (oc, ic, fh, fw)
  1202. * \param[in] offset (dg, 2, fh, fw, oh, ow)
  1203. * \param[in] mask (dg, fh, fw, oh, ow)
  1204. * \param[in] out_grad (n, oc, oh, ow)
  1205. * \param[out] im_grad (n, ic, ih, iw)
  1206. * \param[out] offset_grad (dg, 2, fh, fw, oh, ow)
  1207. * \param[out] mask_grad (dg, fh, fw, oh, ow)
  1208. */
  1209. virtual void exec(_megdnn_tensor_in im, _megdnn_tensor_in filter,
  1210. _megdnn_tensor_in offset, _megdnn_tensor_in mask,
  1211. _megdnn_tensor_in out_grad, _megdnn_tensor_out im_grad,
  1212. _megdnn_tensor_out offset_grad,
  1213. _megdnn_tensor_out mask_grad,
  1214. _megdnn_workspace workspace) = 0;
  1215. virtual size_t get_workspace_in_bytes(
  1216. const TensorLayout& im, const TensorLayout& filter,
  1217. const TensorLayout& offset, const TensorLayout& mask,
  1218. const TensorLayout& out_grad, const TensorLayout& im_grad,
  1219. const TensorLayout& offset_grad, const TensorLayout& mask_grad) = 0;
  1220. void deduce_layout(const TensorLayout& im, const TensorLayout& filter,
  1221. const TensorLayout& offset, const TensorLayout& mask,
  1222. const TensorLayout& out_grad, TensorLayout& im_grad,
  1223. TensorLayout& offset_grad, TensorLayout& mask_grad);
  1224. protected:
  1225. CanonizedFilterMeta check_exec(
  1226. const TensorLayout& im, const TensorLayout& filter,
  1227. const TensorLayout& offset, const TensorLayout& mask,
  1228. const TensorLayout& out_grad, const TensorLayout& im_grad,
  1229. const TensorLayout& offset_grad, const TensorLayout& mask_grad,
  1230. size_t workspace_in_bytes);
  1231. };
  1232. class DeformablePSROIPoolingBase : public OperatorBase {
  1233. DEF_OPR_IMPL_CTOR(DeformablePSROIPoolingBase, OperatorBase);
  1234. DEF_OPR_PARAM(DeformablePSROIPooling);
  1235. protected:
  1236. void deduce_layout_fwd(const TensorLayout& data, const TensorLayout& trans,
  1237. const TensorLayout& rois, TensorLayout& out_data,
  1238. TensorLayout& out_count);
  1239. void check_layout_fwd(const TensorLayout& data, const TensorLayout& trans,
  1240. const TensorLayout& rois,
  1241. const TensorLayout& out_data,
  1242. const TensorLayout& out_count,
  1243. size_t workspace_in_bytes);
  1244. };
  1245. class DeformablePSROIPoolingForward : public DeformablePSROIPoolingBase {
  1246. DEF_OPR_IMPL(DeformablePSROIPoolingForward, DeformablePSROIPoolingBase, 3,
  1247. 2);
  1248. public:
  1249. /**
  1250. * \param[in] data (oc, ic, ih, iw)
  1251. * \param[in] rois (xx, xx, xx, xx)
  1252. * \param[in] trans (oc, ic, fh, fw)
  1253. * \param[out] out_data ( n, ic, ih, iw)
  1254. * \param[out] out_count ( n, ic, ih, iw)
  1255. */
  1256. virtual size_t get_workspace_in_bytes(const TensorLayout& data,
  1257. const TensorLayout& rois,
  1258. const TensorLayout& trans,
  1259. const TensorLayout& out_data,
  1260. const TensorLayout& out_count) = 0;
  1261. virtual void exec(_megdnn_tensor_in data, _megdnn_tensor_in rois,
  1262. _megdnn_tensor_in trans, _megdnn_tensor_out out_data,
  1263. _megdnn_tensor_out out_count,
  1264. _megdnn_workspace workspace) = 0;
  1265. void deduce_layout(const TensorLayout& data, const TensorLayout& rois,
  1266. const TensorLayout& trans, TensorLayout& out_data,
  1267. TensorLayout& out_count);
  1268. void check_exec(const TensorLayout& data, const TensorLayout& rois,
  1269. const TensorLayout& trans, const TensorLayout& out_data,
  1270. const TensorLayout& out_count, size_t workspace_in_bytes);
  1271. };
  1272. using DeformablePSROIPooling = DeformablePSROIPoolingForward;
  1273. class DeformablePSROIPoolingBackward : public DeformablePSROIPoolingBase {
  1274. DEF_OPR_IMPL(DeformablePSROIPoolingBackward, DeformablePSROIPoolingBase, 5,
  1275. 2);
  1276. public:
  1277. /**
  1278. * \param[in] data (oc, ic, ih, iw)
  1279. * \param[in] rois (xx, xx, xx, xx)
  1280. * \param[in] trans (oc, ic, fh, fw)
  1281. * \param[in] out_diff (xx, xx, xx, xx)
  1282. * \param[in] out_count (xx, xx, xx, xx)
  1283. * \param[out] data_diff ( n, ic, ih, iw)
  1284. * \param[out] trans_diff ( n, ic, ih, iw)
  1285. */
  1286. virtual void exec(_megdnn_tensor_in data, _megdnn_tensor_in rois,
  1287. _megdnn_tensor_in trans, _megdnn_tensor_in out_diff,
  1288. _megdnn_tensor_in out_count, _megdnn_tensor_out data_diff,
  1289. _megdnn_tensor_out trans_diff,
  1290. _megdnn_workspace workspace) = 0;
  1291. virtual size_t get_workspace_in_bytes(const TensorLayout& data,
  1292. const TensorLayout& rois,
  1293. const TensorLayout& trans,
  1294. const TensorLayout& out_diff,
  1295. const TensorLayout& out_count,
  1296. const TensorLayout& data_diff,
  1297. const TensorLayout& trans_diff) = 0;
  1298. void check_exec(const TensorLayout& data, const TensorLayout& rois,
  1299. const TensorLayout& trans, const TensorLayout& out_diff,
  1300. const TensorLayout& out_count,
  1301. const TensorLayout& data_diff,
  1302. const TensorLayout& trans_diff, size_t workspace_in_bytes);
  1303. };
  1304. class BatchConvBiasForward
  1305. : public ConvolutionBase<param::BatchConvBias>,
  1306. public detail::MultiAlgoOpr<BatchConvBiasForward, 5> {
  1307. DEF_OPR_IMPL(BatchConvBiasForward, ConvolutionBase, 4, 1);
  1308. public:
  1309. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
  1310. _megdnn_tensor_in bias, _megdnn_tensor_in z,
  1311. _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;
  1312. void deduce_dtype(DType src, DType filter, DType bias, DType z, DType& dst);
  1313. void deduce_layout(const TensorLayout& src, const TensorLayout& filter,
  1314. const TensorLayout& bias, const TensorLayout& z,
  1315. TensorLayout& dst);
  1316. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  1317. const TensorLayout& filter,
  1318. const TensorLayout& bias,
  1319. const TensorLayout& z,
  1320. const TensorLayout& dst) = 0;
  1321. protected:
  1322. CanonizedFilterMeta check_exec(const TensorLayout& src,
  1323. const TensorLayout& filter,
  1324. const TensorLayout& bias,
  1325. const TensorLayout& z,
  1326. const TensorLayout& dst,
  1327. size_t workspace_in_bytes);
  1328. };
  1329. using BatchConvBias = BatchConvBiasForward;
  1330. } // namespace megdnn
  1331. #include "megdnn/internal/opr_header_epilogue.h"
  1332. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台