You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

matrix_mul.cpp 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407
  1. /**
  2. * \file dnn/test/common/matrix_mul.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "test/common/matrix_mul.h"
  12. #include "src/common/utils.h"
  13. #include "test/common/benchmarker.h"
  14. #include "test/common/checker.h"
  15. using namespace megdnn;
  16. using namespace test;
  17. std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_args_no_mask() {
  18. std::vector<TestArg> args;
  19. for (size_t m : {1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 32})
  20. for (size_t n : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
  21. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 32})
  22. for (size_t k : {1, 2, 4, 8, 11, 12, 15, 16, 31, 32, 37})
  23. args.emplace_back(m, n, k, 0);
  24. for (size_t m : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17})
  25. args.emplace_back(m, m + 1, m + 2, 0);
  26. for (size_t mbase : {11})
  27. for (size_t test_case_offset : {64, 256, 512}) {
  28. size_t mnk = mbase + test_case_offset;
  29. args.emplace_back(mnk, mnk, mnk, 0);
  30. return args;
  31. }
  32. return args;
  33. }
  34. std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_mk_packed_args(
  35. size_t nbase) {
  36. std::vector<TestArg> args;
  37. for (size_t m : {1, 2, 3, 4, 5})
  38. for (size_t n : {1, 2, 3, 4, 5, 8, 12, 16, 24})
  39. for (size_t k : {1, 2, 3, 4, 5, 9, 10})
  40. args.emplace_back(m, n * nbase, k, 0);
  41. return args;
  42. }
  43. std::vector<matrix_mul::TestArg>
  44. matrix_mul::get_batched_matmul_args_cublaslt() {
  45. std::vector<TestArg> args;
  46. for (size_t m : {4, 6, 8, 16}) {
  47. for (size_t n : {4, 6, 8, 16}) {
  48. //[TODO]: the following test case are disabled due to the
  49. // cublasLt(version: 10020) produce wrong result when k in [65, 97],
  50. // so please uncomment it if the bug is fixed
  51. for (size_t k : {32, 64}) {
  52. args.emplace_back(m, n, k, 0, 0, 0, 0, 2);
  53. }
  54. }
  55. }
  56. return args;
  57. }
  58. std::vector<matrix_mul::TestArg>
  59. matrix_mul::get_batched_matmul_args_int8x8x32() {
  60. std::vector<TestArg> args;
  61. for (size_t m : {1, 2, 3, 4, 5, 8, 64}) {
  62. for (size_t n : {1, 2, 3, 4, 5, 8, 64}) {
  63. for (size_t k : {1, 2, 3, 4, 5, 8, 64}) {
  64. args.emplace_back(m, n, k, 0, 0, 0, 0, 2);
  65. }
  66. }
  67. }
  68. return args;
  69. }
  70. std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_args_mask(
  71. uint8_t mask) {
  72. std::vector<TestArg> args;
  73. std::vector<TestArg> args_temp = matrix_mul::get_matmul_args_no_mask();
  74. for (auto arg : args_temp) {
  75. arg.mask = mask;
  76. args.emplace_back(arg);
  77. }
  78. // non-contiguous case
  79. for (size_t m : {110})
  80. for (size_t n : {119})
  81. for (size_t k : {120}) {
  82. // A: (m, k)
  83. size_t Astride = mask & 1 ? m + 2 : k + 2;
  84. // B: (k, n)
  85. size_t Bstride = mask & 2 ? k + 2 : n + 2;
  86. size_t Cstride = n + 2;
  87. args.emplace_back(m, n, k, mask, Astride, Bstride, Cstride);
  88. }
  89. return args;
  90. }
  91. std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_args() {
  92. std::vector<TestArg> args;
  93. for (size_t mask = 0; mask < 4; ++mask) {
  94. std::vector<TestArg> args_temp = matrix_mul::get_matmul_args_mask(mask);
  95. for (auto arg : args_temp)
  96. args.emplace_back(arg);
  97. }
  98. return args;
  99. }
  100. std::vector<matrix_mul::TestArg> matrix_mul::get_batched_matmul_args_mask(
  101. uint8_t mask) {
  102. std::vector<TestArg> args;
  103. for (size_t b : {1, 2, 3}) {
  104. std::vector<TestArg> args_temp =
  105. megdnn::test::matrix_mul::get_matmul_args_mask(mask);
  106. for (auto arg : args_temp) {
  107. arg.b = b;
  108. args.emplace_back(arg);
  109. }
  110. }
  111. return args;
  112. }
  113. std::vector<matrix_mul::TestArg> matrix_mul::get_batched_matmul_args() {
  114. std::vector<TestArg> args;
  115. for (size_t mask = 0; mask < 4; ++mask) {
  116. std::vector<TestArg> args_temp =
  117. matrix_mul::get_batched_matmul_args_mask(mask);
  118. for (auto arg : args_temp)
  119. args.emplace_back(arg);
  120. }
  121. return args;
  122. }
  123. template <typename Opr>
  124. void matrix_mul::check_matrix_mul(DType A_dtype, DType B_dtype, DType C_dtype,
  125. Handle* handle, const char* algo,
  126. param::MatrixMul::Format format, size_t nbase,
  127. float eps, std::vector<TestArg>&& user_args) {
  128. megdnn_assert(A_dtype.enumv() == B_dtype.enumv());
  129. Checker<Opr> checker(handle);
  130. if (algo) {
  131. checker.set_before_exec_callback(AlgoChecker<Opr>(algo));
  132. }
  133. std::unique_ptr<RNG> rng;
  134. checker.set_epsilon(eps);
  135. if (A_dtype.enumv() == DTypeEnum::Int8 ||
  136. A_dtype.enumv() == DTypeEnum::QuantizedS8) {
  137. //! use larger rng to check the overflow
  138. rng = std::make_unique<UniformIntRNG>(-127, 127);
  139. } else if (A_dtype.enumv() == DTypeEnum::Uint8 ||
  140. A_dtype.enumv() == DTypeEnum::Quantized8Asymm) {
  141. rng = std::make_unique<NormalRNG>(128.f);
  142. } else if (A_dtype.enumv() == DTypeEnum::Int16) {
  143. rng = std::make_unique<UniformIntRNG>(-32767, 32767);
  144. } else if (A_dtype.enumv() == DTypeEnum::Float16) {
  145. rng = std::make_unique<NormalRNG>(2.f);
  146. //! if fp16 not set eps, default 1e-3, we just set it to 1e-2
  147. if (eps < 1e-2) {
  148. checker.set_epsilon(1e-2);
  149. }
  150. }
  151. if (rng) {
  152. checker.set_rng(0, rng.get()).set_rng(1, rng.get());
  153. }
  154. //! return expect if stride == 0, stride otherwise
  155. auto stride_val = [](size_t stride, size_t expect) -> size_t {
  156. if (stride == 0) {
  157. return expect;
  158. } else {
  159. return stride;
  160. }
  161. };
  162. constexpr static bool batched =
  163. std::is_same<Opr, megdnn::BatchedMatrixMul>::value;
  164. using Param = MatrixMul::Param;
  165. std::vector<TestArg> args;
  166. if (user_args.empty()) {
  167. if (format == param::MatrixMul::Format::DEFAULT) {
  168. if (batched) {
  169. args = matrix_mul::get_batched_matmul_args();
  170. } else {
  171. args = matrix_mul::get_matmul_args();
  172. }
  173. } else {
  174. megdnn_assert(!batched,
  175. "BatchedMatrixMul does not support MK4/MK8");
  176. args = matrix_mul::get_matmul_mk_packed_args(nbase);
  177. }
  178. } else {
  179. args = user_args;
  180. }
  181. size_t pack_size = MatrixMulForward::pack_size(format);
  182. for (auto& arg : args) {
  183. size_t m = arg.m, n = arg.n, k = arg.k;
  184. #if MEGDNN_WITH_CUDA
  185. //[NOTE]: cublas can only process 4B aligned 8-bit input matrix;
  186. bool is_dt_8bit = A_dtype.enumv() == DTypeEnum::Int8 ||
  187. A_dtype.enumv() == DTypeEnum::QuantizedS8 ||
  188. A_dtype.enumv() == DTypeEnum::Uint8 ||
  189. A_dtype.enumv() == DTypeEnum::Quantized8Asymm;
  190. if (is_dt_8bit && ((m % 4 != 0) || (n % 4 != 0))) {
  191. continue;
  192. }
  193. #endif
  194. Param param;
  195. param.transposeA = arg.mask & 0x1;
  196. param.transposeB = arg.mask & 0x2;
  197. param.format = format;
  198. checker.set_dtype(0, A_dtype)
  199. .set_dtype(1, B_dtype)
  200. .set_dtype(2, C_dtype);
  201. size_t A0 = m, A1 = k, B0 = k, B1 = n;
  202. TensorShape A, B;
  203. if (param.transposeA) {
  204. std::swap(A0, A1);
  205. }
  206. if (param.transposeB) {
  207. std::swap(B0, B1);
  208. }
  209. ptrdiff_t A_stride = arg.A_stride, B_stride = arg.B_stride,
  210. C_stride = arg.C_stride, A_batch_stride = arg.A_batch_stride,
  211. B_batch_stride = arg.B_batch_stride,
  212. C_batch_stride = arg.C_batch_stride;
  213. A_stride = stride_val(A_stride, A1);
  214. B_stride = stride_val(B_stride, B1);
  215. C_stride = stride_val(C_stride, n);
  216. A_batch_stride = stride_val(A_batch_stride, A0 * A_stride);
  217. B_batch_stride = stride_val(B_batch_stride, B0 * B_stride);
  218. C_batch_stride = stride_val(C_batch_stride, m * C_stride);
  219. checker.set_param(param);
  220. if (format == param::MatrixMul::Format::DEFAULT) {
  221. if (batched) {
  222. checker.execl({TensorLayout{{arg.b, A0, A1},
  223. {A_batch_stride, A_stride, 1},
  224. A_dtype},
  225. TensorLayout{{arg.b, B0, B1},
  226. {B_batch_stride, B_stride, 1},
  227. B_dtype},
  228. TensorLayout{{arg.b, m, n},
  229. {C_batch_stride, C_stride, 1},
  230. C_dtype}});
  231. } else {
  232. checker.execl({TensorLayout{{A0, A1}, {A_stride, 1}, A_dtype},
  233. TensorLayout{{B0, B1}, {B_stride, 1}, B_dtype},
  234. TensorLayout{{m, n}, {C_stride, 1}, C_dtype}});
  235. }
  236. } else {
  237. //! ignore non-contiguous, only DEFAULT format support
  238. //! non-contiguous input
  239. checker.execs(
  240. {{A0, A1, pack_size, pack_size}, {B0, B1, pack_size}, {}});
  241. }
  242. }
  243. }
  244. void matrix_mul::check_batched_matrix_mul(DType A_dtype, DType B_dtype,
  245. DType C_dtype, Handle* handle,
  246. const char* algo, float eps,
  247. std::vector<TestArg>&& args) {
  248. check_matrix_mul<megdnn::BatchedMatrixMul>(
  249. A_dtype, B_dtype, C_dtype, handle, algo,
  250. param::MatrixMul::Format::DEFAULT, 8, eps,
  251. std::forward<decltype(args)>(args));
  252. }
  253. void matrix_mul::check_matrix_mul(DType A_dtype, DType B_dtype, DType C_dtype,
  254. Handle* handle, const char* algo,
  255. param::MatrixMul::Format format, size_t nbase,
  256. float eps) {
  257. check_matrix_mul<megdnn::MatrixMul>(A_dtype, B_dtype, C_dtype, handle, algo,
  258. format, nbase, eps);
  259. }
  260. #if MEGDNN_WITH_BENCHMARK
  261. std::vector<matrix_mul::TestArg> matrix_mul::get_benchmark_matmul_args() {
  262. std::vector<matrix_mul::TestArg> args;
  263. args.emplace_back(256, 12 * 24, 256, 0);
  264. //////////////////////// gemv //////////////////////////
  265. for (size_t M : {8, 64, 112, 256}) {
  266. for (size_t K : {8, 64, 112, 256}) {
  267. args.emplace_back(M, 1, K, 0);
  268. }
  269. }
  270. //////////////////////// gemm //////////////////////////
  271. for (size_t M : {8, 64, 112, 256}) {
  272. for (size_t K : {8, 16, 32, 64, 112, 256}) {
  273. for (size_t N : {8, 64, 112, 256}) {
  274. args.emplace_back(M, N, K, 0);
  275. }
  276. }
  277. }
  278. return args;
  279. }
  280. std::vector<matrix_mul::TestArg>
  281. matrix_mul::get_benchmark_matmul_mk_packed_args(size_t nbase) {
  282. std::vector<TestArg> args;
  283. for (size_t m : {2, 4, 8, 16, 24, 32, 64})
  284. for (size_t n : {1, 2, 3, 4, 8, 16, 32, 64})
  285. for (size_t k : {2, 4, 8, 16, 24, 32, 64})
  286. args.emplace_back(m, n * nbase, k, 0);
  287. return args;
  288. }
  289. void matrix_mul::benchmark_with_contrast(
  290. Handle* handle, const std::vector<TestArg>& args, DType A_dtype,
  291. DType B_dtype, DType C_dtype, const char* algo,
  292. param::MatrixMul::Format format, DType contrast_A_dtype,
  293. DType contrast_B_dtype, DType contrast_C_dtype,
  294. const char* contrast_algo, param::MatrixMul::Format contrast_format) {
  295. using Param = MatrixMul::Param;
  296. megdnn_assert(A_dtype.enumv() == B_dtype.enumv());
  297. megdnn_assert(contrast_A_dtype.enumv() == contrast_B_dtype.enumv());
  298. Benchmarker<MatrixMul> benchmark_contrast(handle);
  299. Benchmarker<MatrixMul> benchmark(handle);
  300. constexpr size_t RUNS = 50;
  301. if (algo) {
  302. benchmark.set_before_exec_callback(AlgoChecker<MatrixMul>(algo));
  303. }
  304. if (contrast_algo) {
  305. benchmark_contrast.set_before_exec_callback(
  306. AlgoChecker<MatrixMul>(contrast_algo));
  307. }
  308. benchmark.set_dtype(0, A_dtype).set_dtype(1, B_dtype).set_dtype(2, C_dtype);
  309. benchmark.set_times(RUNS);
  310. benchmark_contrast.set_dtype(0, contrast_A_dtype)
  311. .set_dtype(1, contrast_B_dtype)
  312. .set_dtype(2, contrast_C_dtype);
  313. benchmark_contrast.set_times(RUNS);
  314. auto bench = [](Benchmarker<MatrixMul>& benchmark, Param param,
  315. param::MatrixMul::Format format, size_t m, size_t n,
  316. size_t k, size_t pack_size) -> float {
  317. param.format = format;
  318. benchmark.set_param(param);
  319. float used_algo = 1.0;
  320. if (format == param::MatrixMul::Format::DEFAULT) {
  321. size_t A0 = m * pack_size, A1 = k * pack_size, B0 = k * pack_size,
  322. B1 = n;
  323. TensorShape A, B;
  324. if (param.transposeA) {
  325. std::swap(A0, A1);
  326. }
  327. if (param.transposeB) {
  328. std::swap(B0, B1);
  329. }
  330. used_algo = benchmark.execs({{A0, A1}, {B0, B1}, {}}) / RUNS;
  331. } else {
  332. size_t A0 = m, A1 = k, B0 = k, B1 = n;
  333. if (param.transposeA) {
  334. std::swap(A0, A1);
  335. }
  336. if (param.transposeB) {
  337. std::swap(B0, B1);
  338. }
  339. used_algo = benchmark.execs({{A0, A1, pack_size, pack_size},
  340. {B0, B1, pack_size},
  341. {}}) /
  342. RUNS;
  343. }
  344. return used_algo;
  345. };
  346. size_t mk_size = MatrixMulForward::pack_size(format);
  347. size_t mk_size_contrast = MatrixMulForward::pack_size(contrast_format);
  348. size_t pack_size = std::max(mk_size, mk_size_contrast);
  349. for (auto& arg : args) {
  350. Param param;
  351. param.transposeA = arg.mask & 0x1;
  352. param.transposeB = arg.mask & 0x2;
  353. auto used_contrast = bench(benchmark_contrast, param, contrast_format,
  354. arg.m, arg.n, arg.k, pack_size);
  355. auto used_algo =
  356. bench(benchmark, param, format, arg.m, arg.n, arg.k, pack_size);
  357. float computations =
  358. 2.f * arg.m * pack_size * arg.k * pack_size * arg.n * 1e-6;
  359. printf("run: {(%zu, %zu) x (%zu, %zu)} contrast: %f ms %f Gflops %s: "
  360. "%f "
  361. "ms "
  362. "%f Gflops "
  363. "speedup: %f \n",
  364. arg.m * pack_size, arg.k * pack_size, arg.k * pack_size, arg.n,
  365. used_contrast, computations / used_contrast, algo, used_algo,
  366. computations / used_algo, used_contrast / used_algo);
  367. }
  368. }
  369. #endif
  370. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台