You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

network_visualize.py 6.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176
  1. #! /usr/bin/env python3
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import argparse
  10. import numpy as np
  11. from megengine.core.tensor.dtype import is_quantize
  12. from megengine.logger import get_logger
  13. from megengine.utils.module_stats import (
  14. print_flops_stats,
  15. print_params_stats,
  16. sizeof_fmt,
  17. )
  18. from megengine.utils.network import Network
  19. logger = get_logger(__name__)
  20. def visualize(
  21. model_path: str,
  22. log_path: str,
  23. bar_length_max: int = 20,
  24. log_params: bool = True,
  25. log_flops: bool = True,
  26. ):
  27. r"""
  28. Load megengine dumped model and visualize graph structure with tensorboard log files.
  29. Can also record and print model's statistics like :func:`~.module_stats`
  30. :param model_path: dir path for megengine dumped model.
  31. :param log_path: dir path for tensorboard graph log.
  32. :param bar_length_max: size of bar indicating max flops or parameter size in net stats.
  33. :param log_params: whether print and record params size.
  34. :param log_flops: whether print and record op flops.
  35. """
  36. try:
  37. from tensorboard.compat.proto.attr_value_pb2 import AttrValue
  38. from tensorboard.compat.proto.config_pb2 import RunMetadata
  39. from tensorboard.compat.proto.graph_pb2 import GraphDef
  40. from tensorboard.compat.proto.node_def_pb2 import NodeDef
  41. from tensorboard.compat.proto.step_stats_pb2 import (
  42. AllocatorMemoryUsed,
  43. DeviceStepStats,
  44. NodeExecStats,
  45. StepStats,
  46. )
  47. from tensorboard.compat.proto.tensor_shape_pb2 import TensorShapeProto
  48. from tensorboard.compat.proto.versions_pb2 import VersionDef
  49. from tensorboardX import SummaryWriter
  50. except ImportError:
  51. logger.error(
  52. "TensorBoard and TensorboardX are required for visualize.", exc_info=True
  53. )
  54. return
  55. graph = Network.load(model_path)
  56. writer = SummaryWriter(log_path)
  57. def process_name(name):
  58. return name.replace(".", "/").encode(encoding="utf-8")
  59. node_list = []
  60. flops_list = []
  61. params_list = []
  62. for node in graph.all_oprs:
  63. if hasattr(node, "output_idx"):
  64. node_oup = node.outputs[node.output_idx]
  65. else:
  66. if len(node.outputs) != 1:
  67. logger.warning(
  68. "OpNode {} has more than one output and not has 'output_idx' attr.".format(
  69. node
  70. )
  71. )
  72. node_oup = node.outputs[0]
  73. inp_list = [process_name(var.owner.name) for var in node.inputs]
  74. attr = {
  75. "_output_shapes": AttrValue(
  76. list=AttrValue.ListValue(
  77. shape=[
  78. TensorShapeProto(
  79. dim=[TensorShapeProto.Dim(size=d) for d in node_oup.shape]
  80. )
  81. ]
  82. )
  83. ),
  84. }
  85. if hasattr(node, "calc_flops"):
  86. flops_num = node.calc_flops()
  87. # add op flops attr
  88. attr["flops"] = AttrValue(s=sizeof_fmt(flops_num).encode(encoding="utf-8"))
  89. flops_list.append(
  90. dict(
  91. name=node.name,
  92. class_name=node.type,
  93. input_shapes=[i.shape for i in node.inputs],
  94. output_shapes=[o.shape for o in node.outputs],
  95. flops_num=flops_num,
  96. flops_cum=0,
  97. )
  98. )
  99. if node.type == "ImmutableTensor":
  100. param_dim = np.prod(node_oup.shape)
  101. # TODO: consider other quantize dtypes
  102. param_bytes = 1 if is_quantize(node_oup.dtype) else 4
  103. # add tensor size attr
  104. attr["size"] = AttrValue(
  105. s=sizeof_fmt(param_dim * param_bytes).encode(encoding="utf-8")
  106. )
  107. params_list.append(
  108. dict(
  109. name=node.name,
  110. shape=node_oup.shape,
  111. param_dim=param_dim,
  112. bits=param_bytes * 8,
  113. size=param_dim * param_bytes,
  114. size_cum=0,
  115. mean="{:.2g}".format(node.numpy().mean()),
  116. std="{:.2g}".format(node.numpy().std()),
  117. )
  118. )
  119. node_list.append(
  120. NodeDef(
  121. name=process_name(node.name), op=node.type, input=inp_list, attr=attr,
  122. )
  123. )
  124. total_flops, total_params = 0, 0
  125. if log_params:
  126. total_params = print_params_stats(params_list, bar_length_max)
  127. if log_flops:
  128. total_flops = print_flops_stats(flops_list, bar_length_max)
  129. graph_def = GraphDef(node=node_list, versions=VersionDef(producer=22))
  130. device = "/device:CPU:0"
  131. stepstats = RunMetadata(
  132. step_stats=StepStats(dev_stats=[DeviceStepStats(device=device)])
  133. )
  134. writer._get_file_writer().add_graph((graph_def, stepstats))
  135. return total_params, total_flops
  136. def main():
  137. parser = argparse.ArgumentParser(
  138. description="load a megengine dumped model and export log file for tensorboard visualization.",
  139. formatter_class=argparse.ArgumentDefaultsHelpFormatter,
  140. )
  141. parser.add_argument("model_path", help="dumped model path.")
  142. parser.add_argument("log_path", help="tensorboard log path.")
  143. parser.add_argument(
  144. "--bar_length_max",
  145. type=int,
  146. default=20,
  147. help="size of bar indicating max flops or parameter size in net stats.",
  148. )
  149. parser.add_argument(
  150. "--log_params",
  151. action="store_true",
  152. help="whether print and record params size.",
  153. )
  154. parser.add_argument(
  155. "--log_flops", action="store_true", help="whether print and record op flops.",
  156. )
  157. visualize(**vars(parser.parse_args()))
  158. if __name__ == "__main__":
  159. main()

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台