- # -*- coding: utf-8 -*-
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- import os
- from typing import Iterable, Tuple, Union
-
- from ..functional.inplace import _inplace_add_
- from ..tensor import Parameter, tensor
- from .optimizer import Optimizer
-
-
- class Adam(Optimizer):
- r"""
- Implements Adam algorithm proposed in `"Adam: A Method for Stochastic Optimization" <https://arxiv.org/abs/1412.6980>`_.
-
- :param params: iterable of parameters to optimize or dicts defining
- parameter groups.
- :param lr: learning rate.
- :param betas: coefficients used for computing running averages of gradient
- and its square. Default: (0.9, 0.999)
- :param eps: term added to the denominator to improve numerical stability
- Default: 1e-8
- :param weight_decay: weight decay (L2 penalty). Default: 0
- """
-
- def __init__(
- self,
- params: Union[Iterable[Parameter], dict],
- lr: float,
- betas: Tuple[float, float] = (0.9, 0.999),
- eps: float = 1e-8,
- weight_decay: float = 0.0,
- ):
- if lr < 0.0:
- raise ValueError("Invalid learning rate: {}".format(lr))
- if weight_decay < 0.0:
- raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
- if not 0.0 <= betas[0] < 1.0:
- raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
- if not 0.0 <= betas[1] < 1.0:
- raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
-
- defaults = dict(lr=lr, weight_decay=weight_decay, betas=betas, eps=eps)
- super().__init__(params, defaults)
-
- def _create_state(self, param_group):
- for param in param_group["params"]:
- self._add_state(param, "exp_avg")
- self._add_state(param, "exp_avg_sq")
- self._add_state(param, "step", initializer=0.0)
-
- def _updates(self, param_group):
- lr = param_group["lr"]
- weight_decay = param_group["weight_decay"]
- eps = param_group["eps"]
- beta0, beta1 = param_group["betas"]
-
- def make_scalar(val):
- return tensor(val)
-
- # since `conver_inputs` is disabled for param updates,
- # scalar should be explicitly tansforred to tensor
-
- _lr, _neg_lr = map(make_scalar, (lr, -lr))
- _weight_decay = make_scalar(weight_decay)
- _eps = make_scalar(eps)
- _beta0, _beta1 = map(make_scalar, (beta0, beta1))
-
- c1, c05 = map(make_scalar, (1.0, 0.5))
-
- inplace_mode = int(os.getenv("MEGENGINE_INPLACE_UPDATE", "0"))
- if inplace_mode:
- # reduce device sync
- c1_sub_beta0, c1_sub_beta1 = map(make_scalar, (1 - beta0, 1 - beta1))
-
- for param in param_group["params"]:
-
- if param.grad is None:
- continue
-
- grad = param.grad
- if weight_decay != 0.0:
- grad += param * _weight_decay
-
- states = self._state[param]
-
- step, exp_avg, exp_avg_sq = (
- states["step"],
- states["exp_avg"],
- states["exp_avg_sq"],
- )
-
- if inplace_mode:
- _inplace_add_(step, c1, alpha=c1, beta=c1)
- _inplace_add_(exp_avg, grad, alpha=_beta0, beta=c1_sub_beta0)
- _inplace_add_(
- exp_avg_sq, grad * grad, alpha=_beta1, beta=c1_sub_beta1,
- )
-
- delta = (exp_avg / (c1 - _beta0 ** step)) / (
- (exp_avg_sq / (c1 - _beta1 ** step)) ** c05 + _eps
- )
- _inplace_add_(param, delta, alpha=c1, beta=_neg_lr)
- continue
-
- # step = step + c1
- step += c1
-
- # exp_avg = _beta0 * exp_avg + grad * (c1 - _beta0)
- exp_avg *= _beta0
- exp_avg += grad * (c1 - _beta0)
-
- # exp_avg_sq = _beta1 * exp_avg_sq + (c1 - _beta1) * (grad * grad)
- exp_avg_sq *= _beta1
- exp_avg_sq += (c1 - _beta1) * (grad * grad)
-
- delta = (exp_avg / (c1 - _beta0 ** step)) / (
- (exp_avg_sq / (c1 - _beta1 ** step)) ** c05 + _eps
- )
- param -= _lr * delta
|