You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

network.py 25 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import collections
  10. import fnmatch
  11. import itertools
  12. import re
  13. from collections import OrderedDict
  14. from typing import Dict, List, Sequence
  15. import numpy as np
  16. from ..core._imperative_rt import ComputingGraph
  17. from ..core._imperative_rt.core2 import SymbolVar
  18. from ..core.tensor import megbrain_graph as G
  19. from ..logger import get_logger
  20. from .comp_graph_tools import get_dep_vars, get_opr_type, get_oprs_seq
  21. from .network_node import (
  22. Host2DeviceCopy,
  23. ImmutableTensor,
  24. NetworkNode,
  25. OpNode,
  26. VarNode,
  27. str_to_mge_class,
  28. )
  29. logger = get_logger(__name__)
  30. class Network:
  31. def __init__(self):
  32. self.input_vars = [] # input var of graph
  33. self._orig_inputs = []
  34. self.output_vars = [] # output var of graph
  35. self._orig_outputs = []
  36. self.all_oprs_map = OrderedDict()
  37. self.all_vars_map = OrderedDict()
  38. self.graph = ComputingGraph()
  39. @classmethod
  40. def load(cls, model_path: str, outspec: List[str] = None):
  41. """
  42. Loads a computing graph as a Network object.
  43. :param model_path: file path of mge model.
  44. :param outspec: only load the subgraph with outspec as its endpoints.
  45. """
  46. self = cls()
  47. _, _, outputs = G.load_graph(model_path)
  48. if outspec is not None:
  49. output_spec = outspec.copy()
  50. all_vars = get_dep_vars(outputs) + outputs
  51. new_outputs = {}
  52. for i in all_vars:
  53. if i.name in output_spec:
  54. new_outputs[i.name] = i
  55. output_spec.remove(i.name)
  56. assert len(output_spec) == 0, "Can not find {} in this model".format(
  57. output_spec
  58. )
  59. outputs = [new_outputs[i] for i in outspec]
  60. self._orig_outputs = outputs
  61. for x in self._orig_outputs:
  62. self.output_vars.append(self._get_var(x))
  63. self.add_dep_oprs()
  64. for x in self._orig_inputs:
  65. self.input_vars.append(self._get_var(x))
  66. self.graph = self._orig_outputs[0].graph
  67. return self
  68. def _compile(self):
  69. self.all_oprs_map = {}
  70. self.all_vars_map = {}
  71. for opr in self.all_oprs:
  72. if isinstance(opr, (ImmutableTensor, Host2DeviceCopy)):
  73. opr.compile(self.graph)
  74. else:
  75. opr.compile()
  76. if opr.name is not None:
  77. opr._opr.name = opr.name
  78. self.all_oprs_map[opr._opr.id] = opr
  79. for o in opr.outputs:
  80. self.all_vars_map[o.var.id] = o
  81. def optimize_for_inference(self, dest_vars, **kwargs):
  82. r"""
  83. Applies optimize_for_inference pass for operator graph.
  84. :param dest_vars: list of output vars in the operator graph
  85. :Keyword Arguments:
  86. * enable_io16xc32 --
  87. whether to use float16 for I/O between oprs and use
  88. float32 as internal computation precision. Note the output var would be
  89. changed to float16.
  90. * enable_ioc16 --
  91. whether to use float16 for both I/O and computation
  92. precision.
  93. * enable_hwcd4 --
  94. whether to use NHWCD4 data layout. This is faster on some
  95. OpenCL backend.
  96. * enable_nchw88 --
  97. whether to use NCHW88 data layout, currently
  98. used in X86 AVX backend.
  99. * enable_nchw44 --
  100. whether to use NCHW44 data layout, currently
  101. used in arm backend.
  102. * enable_nchw44_dot --
  103. whether to use NCHW44_dot data layout, currently
  104. used in armv8.2+dotprod backend.
  105. * enable_nchw4 --
  106. whether to use NCHW4 data layout, currently
  107. used in nvidia backend(based on cudnn).
  108. * enable_nchw32 --
  109. whether to use NCHW32 data layout, currently
  110. used in nvidia backend with tensorcore(based on cudnn).
  111. * enable_chwn4 --
  112. whether to use CHWN4 data layout, currently
  113. used in nvidia backend with tensorcore.
  114. * enable_fuse_conv_bias_nonlinearity: whether to fuse conv+bias+nonlinearty
  115. into one opr.
  116. * enable_fuse_conv_bias_with_z: whether to fuse conv_bias with z
  117. input for inference on nvidia backend(this optimization pass will
  118. result in mismatch of the precision of output of training and
  119. inference)
  120. """
  121. if not isinstance(dest_vars, Sequence):
  122. dest_vars = [dest_vars]
  123. dest_vars = list(G.VarNode(var.var) for var in dest_vars)
  124. new_vars = G.optimize_for_inference(dest_vars, **kwargs)
  125. return list(self._get_var(var) for var in new_vars)
  126. def dump(
  127. self,
  128. file,
  129. *,
  130. keep_var_name: int = 1,
  131. keep_opr_name: bool = False,
  132. keep_param_name: bool = False,
  133. keep_opr_priority: bool = False,
  134. strip_info_file=None,
  135. append_json=False,
  136. optimize_for_inference=True,
  137. append=False,
  138. **kwargs
  139. ):
  140. """
  141. Serializes graph to file.
  142. :param file: output file, could be file object or filename.
  143. :param append: whether output is appended to ``file``.
  144. Only works when ``file`` is str.
  145. :param keep_var_name: level for keeping variable names:
  146. * 0: none of the names are kept
  147. * 1: (default)keep names of output vars
  148. * 2: keep names of all (output and internal) vars
  149. :param keep_opr_name: whether to keep operator names.
  150. :param keep_param_name: whether to keep param names, so param values can be
  151. easily manipulated after loading model
  152. :param keep_opr_priority: whether to keep priority setting for operators
  153. :param strip_info_file: a string for path or a file handler. if is not None,
  154. then the dump information for code strip would be written to ``strip_info_file``
  155. :param append_json: will be check when `strip_info_file` is not None. if set
  156. true, the information for code strip will be append to strip_info_file.
  157. if set false, will rewrite strip_info_file
  158. :param optimize_for_inference: enbale optmizations,
  159. will skip all optimize options if this is False. Default: True
  160. :Keyword Arguments:
  161. See also :py:meth:`optimize_for_inference`.
  162. """
  163. self._compile()
  164. out = [G.VarNode(var.var) for var in self.output_vars]
  165. if kwargs.pop("arg_names", False):
  166. logger.warning(
  167. '"arg_names" is not supported in Network.dump, rename input vars directly'
  168. )
  169. if kwargs.pop("output_names", False):
  170. logger.warning(
  171. '"output_names" is not supported in Network.dump, rename output vars directly'
  172. )
  173. if optimize_for_inference:
  174. out = G.optimize_for_inference(out, **kwargs)
  175. dump_content, _ = G.dump_graph(
  176. out,
  177. keep_var_name=keep_var_name,
  178. keep_opr_name=keep_opr_name,
  179. keep_param_name=keep_param_name,
  180. keep_opr_priority=keep_opr_priority,
  181. strip_info_file=strip_info_file,
  182. append_json=append_json,
  183. )
  184. if isinstance(file, str):
  185. permission = "wb" if append == False else "ab"
  186. file = open(file, permission)
  187. file.write(dump_content)
  188. def make_const(self, data, name=None, device=None):
  189. """Makes an ImmutableTensor OpNode to provide a parameter for the network.
  190. """
  191. node = ImmutableTensor(data, name, device, self.graph)
  192. node.compile(self.graph)
  193. return node.outputs[0]
  194. def make_input_node(self, shape, dtype, name=None, device=None):
  195. """Makes a Host2DeviceCopy OpNode to provide an input varnode for the network.
  196. """
  197. node = Host2DeviceCopy(shape, dtype, name, device)
  198. node.compile(self.graph)
  199. return node.outputs[0]
  200. def add_output(self, *vars: VarNode):
  201. """Adds vars into the network output node list
  202. """
  203. if not all([var.owner for var in vars]):
  204. self.add_dep_oprs(*vars)
  205. for var in vars:
  206. if var not in self.output_vars:
  207. self.output_vars.append(var)
  208. def remove_output(self, *vars: VarNode):
  209. """Removes vars from the network output node list.
  210. """
  211. for var in vars:
  212. if var in self.output_vars:
  213. self.output_vars.remove(var)
  214. def add_dep_oprs(self, *vars):
  215. if len(vars) == 0:
  216. vars = self.output_vars
  217. q = list(vars)
  218. while len(q) > 0:
  219. cur = q.pop(0)
  220. if cur.owner is not None:
  221. continue
  222. if cur.name is None:
  223. cur.name = cur.var.name
  224. self.all_vars_map[cur.var.id] = cur
  225. mge_opr = cur.var.owner
  226. if get_opr_type(mge_opr) == "Host2DeviceCopy":
  227. self._orig_inputs.extend(mge_opr.outputs)
  228. cur.owner = self._add_opr(mge_opr)
  229. if cur.owner is None:
  230. cur.owner = self.all_oprs_map[mge_opr.id]
  231. continue
  232. q.extend(cur.owner.inputs)
  233. return list(vars)
  234. def modify_opr_names(self, modifier):
  235. """Modifies names of operators **inplace**; useful for merging loaded
  236. network into another network
  237. :param modifier: a string to be prepended to the name, or a function
  238. that maps from name to name
  239. :type modifier: str or callable
  240. """
  241. if isinstance(modifier, str):
  242. om = modifier
  243. modifier = lambda v: "{}.{}".format(om, v)
  244. assert isinstance(modifier, collections.Callable)
  245. for i in self.all_oprs:
  246. v0 = i.name
  247. v1 = modifier(v0)
  248. assert isinstance(v1, str)
  249. i.name = v1
  250. def reset_batch_size(self, batchsize, *, blacklist=()):
  251. """Helper for reset batch size; first dimension of all data providers
  252. not in blacklist are assumed to be the batch size
  253. :param blacklist: data provider names whose first dimension is not
  254. batchbatch size
  255. """
  256. blacklist = set(blacklist)
  257. prev_batchsize = None
  258. for i in self.data_providers_filter:
  259. if i.name in blacklist:
  260. blacklist.remove(i.name)
  261. else:
  262. shp = list(i.shape)
  263. if prev_batchsize is None:
  264. prev_batchsize = shp[0]
  265. else:
  266. assert prev_batchsize == shp[0], (
  267. "batchsize mismatch: batchsize={} "
  268. "shape={} dp={}".format(prev_batchsize, shp, i.name)
  269. )
  270. shp[0] = batchsize
  271. i.shape = tuple(shp)
  272. assert prev_batchsize is not None, "no data provider found"
  273. assert not blacklist, "unused items in blacklist: {}".format(blacklist)
  274. def replace_vars(self, repl_dict: Dict[VarNode, VarNode]):
  275. """
  276. Replaces vars in the graph.
  277. :param repl_dict: the map {old_var: new_var} that specifies how to replace the vars.
  278. """
  279. if not all([var.owner for var in repl_dict.values()]):
  280. print(repl_dict.values())
  281. self.add_dep_oprs(*list(repl_dict.values()))
  282. for var in self.all_vars:
  283. if var in repl_dict:
  284. repl_var = repl_dict[var]
  285. owner = repl_var.owner
  286. idx = owner.outputs.index(repl_var)
  287. owner.outputs[idx] = var
  288. var.__dict__.update(repl_var.__dict__)
  289. var.var = repl_var.var
  290. def replace_oprs(self, repl_dict: Dict[OpNode, OpNode]):
  291. """
  292. Replaces operators in the graph.
  293. :param oprmap: the map {old_opr: new_opr} that specifies how to replace the operators.
  294. """
  295. for opr in self.all_oprs:
  296. if opr in repl_dict:
  297. assert len(opr.outputs) == len(
  298. repl_dict[opr].outputs
  299. ), "can not replace {} with {}".format(type(opr), type(repl_dict[opr]))
  300. repl_dict[opr].outputs = opr.outputs
  301. for ind, var in enumerate(opr.outputs):
  302. var.owner = repl_dict[opr]
  303. var.__dict__.update(repl_dict[opr].outputs[ind].__dict__)
  304. var.var = repl_dict[opr].outputs[ind].var
  305. def get_opr_by_type(self, oprcls, unique=True):
  306. assert issubclass(oprcls, OpNode)
  307. rst = self.opr_filter.type(oprcls).as_list()
  308. if unique:
  309. assert len(rst) == 1, "{} operators of type {} found".format(
  310. len(rst), oprcls
  311. )
  312. (rst,) = rst
  313. return rst
  314. def get_opr_by_name(self, name, unique=True):
  315. rst = self.opr_filter.name(name).as_list()
  316. if unique:
  317. assert len(rst) == 1, "{} operators of type {} found".format(len(rst), name)
  318. (rst,) = rst
  319. return rst
  320. def get_var_by_name(self, name, unique=True):
  321. rst = self.var_filter.name(name).as_list()
  322. if unique:
  323. assert len(rst) == 1, "{} operators of type {} found".format(len(rst), name)
  324. (rst,) = rst
  325. return rst
  326. def get_var_receive_oprs(self, var):
  327. """ Gets all oprs which use var as input
  328. """
  329. return self.opr_filter.has_input(var).as_list()
  330. def get_dep_oprs(self, var):
  331. """Gets dependent oprs of var
  332. """
  333. return get_oprs_seq(var, False, False)
  334. @property
  335. def opr_filter(self):
  336. """Filter on all opnodes of the Network.
  337. """
  338. oprs = self.all_oprs
  339. return NodeFilter(itertools.islice(oprs, len(oprs)))
  340. @property
  341. def var_filter(self):
  342. """Filter on all varnode of the Network.
  343. """
  344. vars = self.all_vars
  345. return NodeFilter(itertools.islice(vars, len(vars)))
  346. @property
  347. def params_filter(self): # all immutable tensor
  348. """Filter on all parameters (ImmutableTensor Opr) of the Network
  349. """
  350. return self.opr_filter.param_provider()
  351. @property
  352. def data_providers_filter(self): # all host2devicecopy
  353. """Filter on all input nodes (Host2DeviceCopy Opr) of the Network
  354. """
  355. return self.opr_filter.data_provider()
  356. @property
  357. def dest_vars(self):
  358. """Output varnodes of the Network.
  359. """
  360. return self.output_vars
  361. @property
  362. def all_oprs(self):
  363. return get_oprs_seq(self.output_vars, False, False)
  364. @property
  365. def all_vars(self):
  366. return get_dep_vars(self.output_vars)
  367. @property
  368. def all_vars_dict(self):
  369. return self.var_filter.as_dict()
  370. @property
  371. def all_oprs_dict(self):
  372. return self.opr_filter.as_dict()
  373. # used for loading and building graph
  374. def _add_opr(self, opr):
  375. # TODO: use megbrain C++ RTTI to replace type string
  376. if opr.id not in self.all_oprs_map:
  377. opnode = str_to_mge_class(get_opr_type(opr)).load(opr)
  378. self.all_oprs_map[opr.id] = opnode
  379. for var in opr.inputs:
  380. opnode.add_inp_var(self._get_var(var))
  381. for var in opr.outputs:
  382. opnode.add_out_var(self._get_var(var))
  383. return opnode
  384. else:
  385. return None
  386. def _get_opr(self, x):
  387. if x.id in self.all_oprs_map:
  388. return self.all_oprs_map[x.id]
  389. else:
  390. return None
  391. def _get_var(self, x):
  392. # auto convert to VarNode of Network
  393. if x.id not in self.all_vars_map or self.all_vars_map[x.id].var != x:
  394. self.all_vars_map[x.id] = VarNode.load(x, self._get_opr(x.owner))
  395. return self.all_vars_map[x.id]
  396. def as_varnode(obj):
  397. """convert a :class:`.VarNode` compatible object to :class:`.VarNode`.
  398. :param obj: it must be one of the following:
  399. 1. a :class:`.VarNode` object
  400. 2. a :class:`.OpNode` object that has unique output
  401. 3. an iterable that produces either type 1 or 2, with length 1
  402. :rtype: :class:`.VarNode`
  403. """
  404. if type(obj) is VarNode:
  405. return obj
  406. if isinstance(obj, OpNode):
  407. assert len(obj.outputs) == 1, (
  408. "operator {} must have one output to be converted to VarNode; "
  409. "got {} actually".format(obj, len(obj.outputs))
  410. )
  411. ret = obj.outputs[0]
  412. assert type(ret) is VarNode
  413. return ret
  414. assert isinstance(
  415. obj, collections.Iterable
  416. ), "{} is not compatible with VarNode".format(obj)
  417. val = list(obj)
  418. assert (
  419. len(val) == 1
  420. ), "can not convert sequence of length {} to VarNode ({})".format(
  421. len(val), (lambda s: s if len(s) < 50 else s[:50] + " ...")(str(val))
  422. )
  423. return as_varnode(val[0])
  424. def as_oprnode(obj):
  425. """convert a :class:`.OpNode` compatible object to
  426. :class:`.OpNode`; it works like :func:`as_varnode`."""
  427. if type(obj) is VarNode:
  428. return obj.owner
  429. if isinstance(obj, OpNode):
  430. return obj
  431. assert isinstance(
  432. obj, collections.Iterable
  433. ), "{} is not compatible with OpNode".format(obj)
  434. val = list(obj)
  435. assert (
  436. len(val) == 1
  437. ), "can not convert sequence of length {} to " "OpNode({})".format(len(val), val)
  438. return as_oprnode(val[0])
  439. class NodeFilter:
  440. """Filter on node iterator. This class is an iterator of
  441. :class:`.NetworkNode` objects and multiple filtering conditions and
  442. mappers can be chained.
  443. Example::
  444. # find all :class:`.ImmutableTensor` nodes
  445. for i in NodeFilter(node_iter).param_provider():
  446. print(i)
  447. # find all :class:`.ImmutableTensor` nodes that end with ':W'
  448. for i in NodeFilter(node_iter).param_provider().name('*:W'):
  449. print(i)
  450. # number of inputs
  451. nr_input = NodeFilter(node_iter).data_provider().as_count()
  452. """
  453. _iter = None
  454. def __init__(self, node_iter):
  455. """
  456. :param node_iter: iterator to :class:`.NetworkNode`, or a
  457. :class:`.VarNode`-compatible object; in the later case, its
  458. dependent oprs would be used
  459. """
  460. if isinstance(node_iter, VarNode):
  461. oprs = get_oprs_seq(node_iter, False, False)
  462. node_iter = itertools.islice(oprs, len(oprs) - 1)
  463. if isinstance(node_iter, OpNode):
  464. oprs = get_oprs_seq(node_iter.inputs, False, False)
  465. node_iter = itertools.islice(oprs, len(oprs) - 1)
  466. assert isinstance(node_iter, collections.Iterable)
  467. if (not isinstance(node_iter, NodeFilter)) and type(
  468. self
  469. ) is not NodeFilterCheckType:
  470. node_iter = NodeFilterCheckType(node_iter, NetworkNode)
  471. self._iter = node_iter
  472. @classmethod
  473. def make_all_deps(cls, *dest_vars):
  474. """make a :class:`NodeFilter` that contains all deps of given vars"""
  475. return cls(list(get_oprs_seq(dest_vars, False, False)))
  476. def __iter__(self):
  477. """to be overwritten by subclass to implement filters"""
  478. return iter(self._iter)
  479. def type(self, node_type):
  480. """filter by specific node type
  481. :param node_type: node type class
  482. :return: a new :class:`NodeFilter` object
  483. """
  484. return NodeFilterType(self, node_type)
  485. def check_type(self, node_type):
  486. """assert that all oprs produced by this iterator are instances of
  487. certain type
  488. :param node_type: node type class
  489. :return: a new :class:`NodeFilter` object
  490. :raises TypeError: if type check failed
  491. """
  492. return NodeFilterCheckType(self, node_type)
  493. def not_type(self, node_type):
  494. """remove oprs of specific type
  495. :param node_type: node type class
  496. :return: a new :class:`NodeFilter` object
  497. """
  498. return NodeFilterNotType(self, node_type)
  499. def param_provider(self):
  500. """get :class:`.ParamProvider` oprs; shorthand for
  501. ``.type(ParamProvider)``"""
  502. return self.type(ImmutableTensor)
  503. def data_provider(self):
  504. """get :class:`.DataProvider` oprs; shorthand for
  505. ``.type(DataProvider)``"""
  506. return self.type(Host2DeviceCopy)
  507. def name(self, pattern, ignorecase=True):
  508. """filter by node name
  509. :param pattern: a string in glob syntax that can contain ``?`` and
  510. ``*`` to match a single or arbitrary characters.
  511. :type pattern: :class:`str`
  512. :param ignorecase: whether to ignroe case
  513. :type ignorecase: bool
  514. :return: a new :class:`NodeFilter` object
  515. """
  516. return NodeFilterName(self, pattern, ignorecase)
  517. def has_input(self, var):
  518. """an opr is kept if it has given var as one of its inputs
  519. :param var: var node to checked
  520. :return: a new :class:`NodeFilter` object
  521. """
  522. return NodeFilterHasInput(self, var)
  523. def as_list(self):
  524. """consume this iterator and return its content as a list
  525. :rtype: [:class:`.GraphNodeBase`]
  526. """
  527. return list(self)
  528. def as_unique(self):
  529. """assert that this iterator yields only one node and return it
  530. :return: the unique node
  531. :rtype: :class:`.GraphNodeBase`
  532. :raises ValueError: if this iterator does not yield a unique node
  533. """
  534. (opr,) = self
  535. return opr
  536. def as_dict(self):
  537. """construct an ordered dict to map from node names to objects in
  538. this iterator
  539. :rtype: :class:`OrderedDict`
  540. """
  541. return collections.OrderedDict((i.name, i) for i in self)
  542. def as_count(self):
  543. """consume this iterator and get the number of elements
  544. :rtype: int
  545. """
  546. return sum(1 for _ in self)
  547. class NodeFilterType(NodeFilter):
  548. """see :meth:`NodeFilter.type`"""
  549. _node_type = None
  550. def __init__(self, node_iter, node_type):
  551. assert issubclass(node_type, NetworkNode), "bad opr type: {}".format(node_type)
  552. super().__init__(node_iter)
  553. self._node_type = node_type
  554. def __iter__(self):
  555. for i in self._iter:
  556. if isinstance(i, self._node_type):
  557. yield i
  558. class NodeFilterNotType(NodeFilterType):
  559. """see :meth:`NodeFilter.not_type`"""
  560. def __iter__(self):
  561. for i in self._iter:
  562. if not isinstance(i, self._node_type):
  563. yield i
  564. class NodeFilterCheckType(NodeFilterType):
  565. """see :meth:`NodeFilter.check_type`"""
  566. def __iter__(self):
  567. for i in self._iter:
  568. if not isinstance(i, self._node_type):
  569. raise TypeError(
  570. "all nodes should be {}; got {!r}".format(self._node_type, i)
  571. )
  572. yield i
  573. class NodeFilterHasInput(NodeFilter):
  574. """see :meth:`NodeFilter.has_input`"""
  575. _var = None
  576. def __init__(self, node_iter, var):
  577. var = as_varnode(var)
  578. super().__init__(node_iter)
  579. self.var = var
  580. def __iter__(self):
  581. for i in self._iter:
  582. assert isinstance(
  583. i, OpNode
  584. ), "has_input() must be used with OpNode; " "got {!r}".format(i)
  585. if any(self.var is _ for _ in i.inputs):
  586. yield i
  587. class NodeFilterName(NodeFilter):
  588. """see :meth:`NodeFilter.name`"""
  589. _re = None
  590. def __init__(self, node_iter, pattern, ignorecase):
  591. super().__init__(node_iter)
  592. self.pattern = pattern
  593. self._re = self.make_re(pattern, ignorecase)
  594. @classmethod
  595. def make_re(cls, pattern, ignorecase=True):
  596. assert isinstance(pattern, str), "bad pattern: {!r}".format(pattern)
  597. assert isinstance(ignorecase, bool)
  598. flags = 0
  599. if ignorecase:
  600. flags |= re.IGNORECASE
  601. return re.compile(fnmatch.translate(pattern), flags=flags)
  602. def __iter__(self):
  603. for i in self._iter:
  604. if self.pattern == i.name or self._re.match(i.name):
  605. yield i

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台