You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_tensor.py 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import os
  10. import platform
  11. import numpy as np
  12. import pytest
  13. from utils import make_tensor, opr_test
  14. import megengine.functional as F
  15. from megengine import tensor
  16. from megengine.core._trace_option import use_symbolic_shape
  17. from megengine.core.tensor import megbrain_graph as G
  18. from megengine.core.tensor.utils import astensor1d
  19. from megengine.distributed.helper import get_device_count_by_fork
  20. from megengine.utils.network import Network
  21. from megengine.utils.network_node import VarNode
  22. def test_eye():
  23. dtype = np.float32
  24. cases = [{"input": [10, 20]}, {"input": [30]}]
  25. for case in cases:
  26. np.testing.assert_allclose(
  27. F.eye(case["input"], dtype=dtype).numpy(),
  28. np.eye(*case["input"]).astype(dtype),
  29. )
  30. np.testing.assert_allclose(
  31. F.eye(*case["input"], dtype=dtype).numpy(),
  32. np.eye(*case["input"]).astype(dtype),
  33. )
  34. np.testing.assert_allclose(
  35. F.eye(tensor(case["input"]), dtype=dtype).numpy(),
  36. np.eye(*case["input"]).astype(dtype),
  37. )
  38. @pytest.mark.parametrize("is_varnode", [True, False])
  39. def test_concat(is_varnode):
  40. if is_varnode:
  41. network = Network()
  42. else:
  43. network = None
  44. def get_data_shape(length: int):
  45. return (length, 2, 3)
  46. data1 = np.random.random(get_data_shape(5)).astype("float32")
  47. data2 = np.random.random(get_data_shape(6)).astype("float32")
  48. data3 = np.random.random(get_data_shape(7)).astype("float32")
  49. def run(data1, data2):
  50. return F.concat([data1, data2])
  51. cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
  52. opr_test(cases, run, ref_fn=lambda x, y: np.concatenate([x, y]), network=network)
  53. @pytest.mark.parametrize("is_varnode", [True, False])
  54. def test_concat_device(is_varnode):
  55. if is_varnode:
  56. network = Network()
  57. else:
  58. network = None
  59. data1 = make_tensor(np.random.random((3, 2, 2)).astype("float32"), network, "cpu0")
  60. data2 = make_tensor(np.random.random((2, 2, 2)).astype("float32"), network, "cpu1")
  61. out = F.concat([data1, data2], device="cpu0")
  62. assert str(out.device).split(":")[0] == "cpu0"
  63. @pytest.mark.parametrize("is_varnode", [True, False])
  64. def test_stack(is_varnode):
  65. if is_varnode:
  66. network = Network()
  67. else:
  68. network = None
  69. data1 = np.random.random((3, 2, 2)).astype("float32")
  70. data2 = np.random.random((3, 2, 2)).astype("float32")
  71. data3 = np.random.random((3, 2, 2)).astype("float32")
  72. cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
  73. for ai in range(3):
  74. def run(data1, data2):
  75. return F.stack([data1, data2], axis=ai)
  76. opr_test(
  77. cases, run, ref_fn=lambda x, y: np.stack([x, y], axis=ai), network=network
  78. )
  79. @pytest.mark.parametrize("is_varnode", [True, False])
  80. def test_split(is_varnode):
  81. if is_varnode:
  82. network = Network()
  83. else:
  84. network = None
  85. data = np.random.random((2, 3, 4, 5)).astype(np.float32)
  86. inp = make_tensor(data, network)
  87. mge_out0 = F.split(inp, 2, axis=3)
  88. mge_out1 = F.split(inp, [3], axis=3)
  89. np_out = np.split(data, [3, 5], axis=3)
  90. assert len(mge_out0) == 2
  91. assert len(mge_out1) == 2
  92. np.testing.assert_equal(mge_out0[0].numpy(), np_out[0])
  93. np.testing.assert_equal(mge_out1[0].numpy(), np_out[0])
  94. np.testing.assert_equal(mge_out0[1].numpy(), np_out[1])
  95. np.testing.assert_equal(mge_out1[1].numpy(), np_out[1])
  96. try:
  97. F.split(inp, 4)
  98. assert False
  99. except ValueError as e:
  100. pass
  101. try:
  102. F.split(inp, [3, 3, 5], axis=3)
  103. assert False
  104. except ValueError as e:
  105. assert str(e) == "Invalid nsplits_or_secions: [3, 3, 5]"
  106. @pytest.mark.parametrize("is_varnode", [True, False])
  107. def test_reshape(is_varnode):
  108. if is_varnode:
  109. network = Network()
  110. else:
  111. network = None
  112. x = np.arange(6, dtype="float32")
  113. xx = make_tensor(x, network)
  114. y = x.reshape(1, 2, 3)
  115. for shape in [
  116. (1, 2, 3),
  117. (1, -1, 3),
  118. (1, make_tensor(-1, network), 3),
  119. np.array([1, -1, 3], dtype="int32"),
  120. make_tensor([1, -1, 3], network),
  121. ]:
  122. yy = F.reshape(xx, shape)
  123. np.testing.assert_equal(yy.numpy(), y)
  124. @pytest.mark.parametrize("is_varnode", [True, False])
  125. def test_reshape_shape_inference(is_varnode):
  126. if is_varnode:
  127. network = Network()
  128. else:
  129. network = None
  130. x_shape_known = make_tensor([1, 2, 3, 4], network)
  131. x_shape_unknown = F.broadcast_to(
  132. make_tensor([1.0], network), shape=make_tensor([1, 1, 1, 1], network).sum()
  133. )
  134. tshp_unknown = astensor1d(
  135. (make_tensor([2], network), make_tensor([2], network)), x_shape_known
  136. )
  137. tshp_known = astensor1d((2, 2), x_shape_known)
  138. tshp_known_unspec = astensor1d((2, -1), x_shape_known)
  139. def check_shape(output, target):
  140. source = output.shape
  141. if isinstance(source, tensor):
  142. source = source.numpy()
  143. np.testing.assert_equal(source, target)
  144. def func(x, target_shape):
  145. return x.reshape(target_shape)
  146. cases = [
  147. {"input": [x_shape_known, tshp_unknown], "output": [(2, 2),]},
  148. {"input": [x_shape_unknown, tshp_unknown], "output": [(2, 2),]},
  149. {"input": [x_shape_known, tshp_known], "output": [(2, 2),]},
  150. {"input": [x_shape_known, tshp_known_unspec], "output": [(2, 2),]},
  151. {"input": [x_shape_unknown, tshp_known], "output": [(2, 2),]},
  152. {"input": [x_shape_unknown, tshp_known_unspec], "output": [(2, 2),]},
  153. ]
  154. opr_test(cases, func, compare_fn=check_shape, test_trace=True, network=network)
  155. @pytest.mark.parametrize("is_varnode", [True, False])
  156. def test_squeeze(is_varnode):
  157. if is_varnode:
  158. network = Network()
  159. else:
  160. network = None
  161. x = np.arange(6, dtype="float32").reshape(1, 2, 3, 1)
  162. xx = make_tensor(x, network)
  163. for axis in [None, 3, -4, (3, -4)]:
  164. y = np.squeeze(x, axis)
  165. yy = F.squeeze(xx, axis)
  166. np.testing.assert_equal(y, yy.numpy())
  167. @pytest.mark.parametrize("is_varnode", [True, False])
  168. def test_expand_dims(is_varnode):
  169. if is_varnode:
  170. network = Network()
  171. else:
  172. network = None
  173. x = np.arange(6, dtype="float32").reshape(2, 3)
  174. xx = make_tensor(x, network)
  175. for axis in [2, -3, (3, -4), (1, -4)]:
  176. y = np.expand_dims(x, axis)
  177. yy = F.expand_dims(xx, axis)
  178. np.testing.assert_equal(y, yy.numpy())
  179. @pytest.mark.parametrize("is_varnode", [True, False])
  180. def test_elemwise_dtype_promotion(is_varnode):
  181. if is_varnode:
  182. network = Network()
  183. else:
  184. network = None
  185. x = np.random.rand(2, 3).astype("float32")
  186. y = np.random.rand(1, 3).astype("float16")
  187. xx = make_tensor(x, network)
  188. yy = make_tensor(y, network)
  189. z = xx * yy
  190. np.testing.assert_equal(z.numpy(), x * y)
  191. z = xx + y
  192. np.testing.assert_equal(z.numpy(), x + y)
  193. z = x - yy
  194. np.testing.assert_equal(z.numpy(), x - y)
  195. @pytest.mark.parametrize("is_varnode", [True, False])
  196. def test_linspace(is_varnode):
  197. if is_varnode:
  198. network = Network()
  199. else:
  200. network = None
  201. cases = [
  202. {"input": [1, 9, 9]},
  203. {"input": [3, 10, 8]},
  204. ]
  205. opr_test(
  206. cases,
  207. F.linspace,
  208. ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
  209. network=network,
  210. )
  211. cases = [
  212. {"input": [9, 1, 9]},
  213. {"input": [10, 3, 8]},
  214. ]
  215. opr_test(
  216. cases,
  217. F.linspace,
  218. ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
  219. network=network,
  220. )
  221. cases = [
  222. {"input": [1, make_tensor(9, network), 9]},
  223. {"input": [make_tensor(1, network), 9, make_tensor(9, network)]},
  224. ]
  225. opr_test(
  226. cases,
  227. F.linspace,
  228. ref_fn=lambda start, end, step: np.linspace(1, 9, 9, dtype=np.float32),
  229. network=network,
  230. )
  231. @pytest.mark.parametrize("is_varnode", [True, False])
  232. def test_arange(is_varnode):
  233. if is_varnode:
  234. network = Network()
  235. else:
  236. network = None
  237. cases = [
  238. {"input": [1, 9, 1]},
  239. {"input": [2, 10, 2]},
  240. ]
  241. opr_test(
  242. cases,
  243. F.arange,
  244. ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
  245. network=network,
  246. )
  247. cases = [
  248. {"input": [9, 1, -1]},
  249. {"input": [10, 2, -2]},
  250. ]
  251. opr_test(
  252. cases,
  253. F.arange,
  254. ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
  255. network=network,
  256. )
  257. cases = [
  258. {"input": [9.3, 1.2, -0.5]},
  259. {"input": [10.3, 2.1, -1.7]},
  260. ]
  261. opr_test(
  262. cases,
  263. F.arange,
  264. ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
  265. network=network,
  266. )
  267. @pytest.mark.parametrize("is_varnode", [True, False])
  268. def test_round(is_varnode):
  269. if is_varnode:
  270. network = Network()
  271. else:
  272. network = None
  273. data1_shape = (15,)
  274. data2_shape = (25,)
  275. data1 = np.random.random(data1_shape).astype(np.float32)
  276. data2 = np.random.random(data2_shape).astype(np.float32)
  277. cases = [{"input": data1}, {"input": data2}]
  278. opr_test(cases, F.round, ref_fn=np.round, network=network)
  279. @pytest.mark.parametrize("is_varnode", [True, False])
  280. def test_flatten(is_varnode):
  281. if is_varnode:
  282. network = Network()
  283. else:
  284. network = None
  285. data0_shape = (2, 3, 4, 5)
  286. data1_shape = (4, 5, 6, 7)
  287. data0 = np.random.random(data0_shape).astype(np.float32)
  288. data1 = np.random.random(data1_shape).astype(np.float32)
  289. def compare_fn(x, y):
  290. assert x.shape[0] == y
  291. output0 = (2 * 3 * 4 * 5,)
  292. output1 = (4 * 5 * 6 * 7,)
  293. cases = [
  294. {"input": data0, "output": output0},
  295. {"input": data1, "output": output1},
  296. ]
  297. opr_test(cases, F.flatten, compare_fn=compare_fn, network=network)
  298. output0 = (2, 3 * 4 * 5)
  299. output1 = (4, 5 * 6 * 7)
  300. cases = [
  301. {"input": data0, "output": output0},
  302. {"input": data1, "output": output1},
  303. ]
  304. opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1, network=network)
  305. output0 = (2, 3, 4 * 5)
  306. output1 = (4, 5, 6 * 7)
  307. cases = [
  308. {"input": data0, "output": output0},
  309. {"input": data1, "output": output1},
  310. ]
  311. opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=2, network=network)
  312. output0 = (2, 3 * 4, 5)
  313. output1 = (4, 5 * 6, 7)
  314. cases = [
  315. {"input": data0, "output": output0},
  316. {"input": data1, "output": output1},
  317. ]
  318. opr_test(
  319. cases,
  320. F.flatten,
  321. compare_fn=compare_fn,
  322. start_axis=1,
  323. end_axis=2,
  324. network=network,
  325. )
  326. @pytest.mark.parametrize("is_varnode", [True, False])
  327. def test_broadcast(is_varnode):
  328. if is_varnode:
  329. network = Network()
  330. else:
  331. network = None
  332. input1_shape = (20, 30)
  333. output1_shape = (30, 20, 30)
  334. data1 = np.random.random(input1_shape).astype(np.float32)
  335. input2_shape = (10, 1)
  336. output2_shape = (20, 10, 20)
  337. data2 = np.random.random(input2_shape).astype(np.float32)
  338. input3_shape = (10, 10)
  339. output3_shape = (10, 10)
  340. data3 = np.random.random(input3_shape).astype(np.float32)
  341. def compare_fn(x, y):
  342. assert x.shape[0] == y
  343. cases = [
  344. {"input": [data1, output1_shape], "output": output1_shape},
  345. {"input": [data2, output2_shape], "output": output2_shape},
  346. {"input": [data3, output3_shape], "output": output3_shape},
  347. ]
  348. opr_test(cases, F.broadcast_to, compare_fn=compare_fn, network=network)
  349. x = F.ones((2, 1, 3))
  350. with pytest.raises(RuntimeError):
  351. F.broadcast_to(x, (2, 3, 4))
  352. with pytest.raises(RuntimeError):
  353. F.broadcast_to(x, (4, 1, 3))
  354. with pytest.raises(RuntimeError):
  355. F.broadcast_to(x, (1, 3))
  356. @pytest.mark.parametrize("is_varnode", [True, False])
  357. def test_utils_astensor1d(is_varnode):
  358. if is_varnode:
  359. network = Network()
  360. else:
  361. network = None
  362. reference = make_tensor(0, network)
  363. # literal
  364. x = [1, 2, 3]
  365. for dtype in [None, "float32"]:
  366. xx = astensor1d(x, reference, dtype=dtype)
  367. assert isinstance(xx, type(reference))
  368. np.testing.assert_equal(xx.numpy(), x)
  369. # numpy array
  370. x = np.asarray([1, 2, 3], dtype="int32")
  371. for dtype in [None, "float32"]:
  372. xx = astensor1d(x, reference, dtype=dtype)
  373. assert isinstance(xx, type(reference))
  374. np.testing.assert_equal(xx.numpy(), x.astype(dtype) if dtype else x)
  375. # tensor
  376. x = make_tensor([1, 2, 3], network)
  377. for dtype in [None, "float32"]:
  378. xx = astensor1d(x, reference, dtype=dtype)
  379. assert isinstance(xx, type(reference))
  380. np.testing.assert_equal(xx.numpy(), x.numpy())
  381. # mixed
  382. x = [1, make_tensor(2, network), 3]
  383. for dtype in [None, "float32"]:
  384. xx = astensor1d(x, reference, dtype=dtype)
  385. assert isinstance(xx, type(reference))
  386. np.testing.assert_equal(xx.numpy(), [1, 2, 3])
  387. def test_device():
  388. x = tensor([1, 2, 3], dtype="float32")
  389. y1 = F.eye(x.shape, dtype="float32")
  390. y2 = F.eye(x.shape, dtype="float32", device=None)
  391. np.testing.assert_almost_equal(y1.numpy(), y2.numpy())
  392. y3 = F.eye(x.shape, dtype="float32", device="xpux")
  393. y4 = F.eye(x.shape, dtype="float32", device=x.device)
  394. np.testing.assert_almost_equal(y3.numpy(), y4.numpy())
  395. y5 = F.full((3, 2), 4, device=x.device)
  396. y6 = F.full((3, 2), 4, device="xpux")
  397. np.testing.assert_almost_equal(y5.numpy(), y6.numpy())
  398. @pytest.mark.parametrize("is_varnode", [True, False])
  399. def test_identity(is_varnode):
  400. if is_varnode:
  401. network = Network()
  402. else:
  403. network = None
  404. x = make_tensor(np.random.random((5, 10)).astype(np.float32), network)
  405. y = F.copy(x)
  406. np.testing.assert_equal(y.numpy(), x)
  407. def copy_test(dst, src, network):
  408. data = np.random.random((2, 3)).astype(np.float32)
  409. x = make_tensor(data, device=src, network=network)
  410. y = F.copy(x, dst)
  411. assert np.allclose(data, y.numpy())
  412. if network is None:
  413. z = x.to(dst)
  414. assert np.allclose(data, z.numpy())
  415. @pytest.mark.require_ngpu(1)
  416. @pytest.mark.parametrize("is_varnode", [True, False])
  417. def test_copy_h2d(is_varnode):
  418. if is_varnode:
  419. network = Network()
  420. else:
  421. network = None
  422. copy_test("cpu0", "gpu0", network=network)
  423. @pytest.mark.require_ngpu(1)
  424. @pytest.mark.parametrize("is_varnode", [True, False])
  425. def test_copy_d2h(is_varnode):
  426. if is_varnode:
  427. network = Network()
  428. else:
  429. network = None
  430. copy_test("gpu0", "cpu0", network=network)
  431. @pytest.mark.require_ngpu(2)
  432. @pytest.mark.parametrize("is_varnode", [True, False])
  433. def test_copy_d2d(is_varnode):
  434. if is_varnode:
  435. network = Network()
  436. else:
  437. network = None
  438. copy_test("gpu0", "gpu1", network=network)
  439. copy_test("gpu0:0", "gpu0:1", network=network)
  440. @pytest.mark.parametrize(
  441. "shape, repeats, axis",
  442. [
  443. ((2,), 2, 0),
  444. ((2, 3, 4, 5), 3, 0),
  445. ((2, 3, 4, 5), 4, 3),
  446. ((2,), 2, None),
  447. ((2, 3, 4, 5), 3, None),
  448. ((), 1, None),
  449. ((), 10, None),
  450. ],
  451. )
  452. @pytest.mark.parametrize("is_varnode", [True, False])
  453. def test_repeat(shape, repeats, axis, is_varnode):
  454. if is_varnode:
  455. network = Network()
  456. else:
  457. network = None
  458. def repeat_func(inp):
  459. return F.repeat(inp=inp, repeats=repeats, axis=axis)
  460. if shape != ():
  461. cases = [
  462. {"input": np.random.randn(*shape).astype("float32")},
  463. ]
  464. else:
  465. cases = [{"input": np.array(1.23)}]
  466. opr_test(
  467. cases,
  468. repeat_func,
  469. ref_fn=lambda inp: np.repeat(inp, repeats, axis),
  470. network=network,
  471. )
  472. @pytest.mark.parametrize(
  473. "shape, reps",
  474. [
  475. ((2,), (2,)),
  476. ((2, 3, 4, 5), (1, 1, 1, 1)),
  477. ((2, 3, 4, 5), (1, 2, 3, 4)),
  478. ((2, 3, 4, 5), (2, 2, 2, 2, 2, 2, 2)),
  479. ],
  480. )
  481. @pytest.mark.parametrize("is_varnode", [True])
  482. def test_tile(shape, reps, is_varnode):
  483. if is_varnode:
  484. network = Network()
  485. else:
  486. network = None
  487. def tile_func(inp):
  488. return F.tile(inp=inp, reps=reps)
  489. cases = [{"input": np.random.randn(*shape).astype("float32")}]
  490. opr_test(cases, tile_func, ref_fn=lambda inp: np.tile(inp, reps), network=network)

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台