You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

compat.py 4.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136
  1. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  2. #
  3. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  4. #
  5. # Unless required by applicable law or agreed to in writing,
  6. # software distributed under the License is distributed on an
  7. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  8. import numpy as np
  9. from .. import tensor
  10. from ..core.ops.builtin import BatchNorm
  11. from .expr import CallMethod, Constant
  12. from .node import TensorNode
  13. from .serialization import (
  14. register_functional_loader,
  15. register_module_loader,
  16. register_opdef_loader,
  17. register_tensor_method_loader,
  18. )
  19. """
  20. # Expr loaders examples
  21. from ..core.ops.builtin import Elemwise
  22. @register_opdef_loader(Elemwise)
  23. def add_opdef_loader(expr):
  24. if expr.opdef_state["mode"] == "ADD":
  25. expr.opdef_state["mode"] == "MUL"
  26. node = expr.inputs[1]
  27. astype_expr = CallMethod(node, "astype")
  28. oup = TensorNode(
  29. astype_expr,
  30. shape=node.shape,
  31. dtype=expr.inputs[0].dtype,
  32. qparams=node.qparams,
  33. )
  34. astype_expr.set_args_kwargs(node, expr.inputs[0].dtype)
  35. astype_expr.return_val = (oup,)
  36. expr.inputs[1] = oup
  37. @register_functional_loader(("megengine.functional.nn", "conv2d"))
  38. def conv2df_loader(expr):
  39. # expr.func = ("megengine.functional.nn","conv2d")
  40. kwargs = expr.kwargs
  41. orig_weight = expr.named_args["weight"]
  42. astype_expr = CallMethod(orig_weight, "astype")
  43. oup = TensorNode(
  44. astype_expr,
  45. shape=orig_weight.shape,
  46. dtype=orig_weight.dtype,
  47. qparams=orig_weight.qparams,
  48. )
  49. astype_expr.set_args_kwargs(orig_weight, expr.named_args["inp"].dtype)
  50. astype_expr.return_val = (oup,)
  51. expr.set_arg("weight", oup)
  52. @register_module_loader(("megengine.module.conv", "Conv2d"))
  53. def conv2dm_loader(expr):
  54. module = expr.inputs[0].owner
  55. args = list(expr.args)
  56. orig_inp = args[1]
  57. astype_expr = CallMethod(orig_inp, "astype")
  58. oup = TensorNode(
  59. astype_expr,
  60. shape=orig_inp.shape,
  61. dtype=orig_inp.dtype,
  62. qparams=orig_inp.qparams,
  63. )
  64. astype_expr.set_args_kwargs(orig_inp, module.weight.dtype)
  65. astype_expr.return_val = (oup,)
  66. args[1] = oup
  67. expr.set_args_kwargs(*args)
  68. @register_tensor_method_loader("__add__")
  69. def add_loader(expr):
  70. args = list(expr.args)
  71. if not isinstance(args[1], TensorNode):
  72. args[1] = tensor(args[1])
  73. node = Constant(args[1], "const").outputs[0]
  74. astype_expr = CallMethod(node, "astype")
  75. oup = TensorNode(
  76. astype_expr, shape=node.shape, dtype=node.dtype, qparams=node.qparams,
  77. )
  78. astype_expr.set_args_kwargs(node, expr.inputs[0].dtype)
  79. astype_expr.return_val = (oup,)
  80. args[1] = oup
  81. expr.set_args_kwargs(*args)
  82. """
  83. @register_module_loader(
  84. ("megengine.module.batchnorm", "BatchNorm1d"),
  85. ("megengine.module.batchnorm", "BatchNorm2d"),
  86. ("megengine.module.batchnorm", "SyncBatchNorm"),
  87. )
  88. def bn2d_module_loader(expr):
  89. # mge 1.6
  90. if not hasattr(expr, "version"):
  91. module = expr.inputs[0].owner
  92. if not hasattr(module, "param_dim"):
  93. module.param_dim = "dim_1c11"
  94. @register_module_loader(
  95. ("megengine.module.conv_bn", "ConvBn2d"),
  96. ("megengine.module.conv_bn", "ConvBnRelu2d"),
  97. ("megengine.module.qat.conv_bn", "ConvBn2d"),
  98. ("megengine.module.qat.conv_bn", "ConvBnRelu2d"),
  99. )
  100. def convbn2d_module_loader(expr):
  101. # mge 1.6
  102. if not hasattr(expr, "version"):
  103. module = expr.inputs[0].owner
  104. if not hasattr(module.bn, "param_dim"):
  105. module.bn.param_dim = "dim_1c11"
  106. @register_opdef_loader(BatchNorm)
  107. def bn_opdef_loader(expr):
  108. # mge 1.6
  109. if not hasattr(expr, "version"):
  110. output = expr.outputs[-1]
  111. oup = TensorNode(expr, shape=(0,), dtype=None, qparams=output._qparams,)
  112. expr.outputs.insert(4, oup)

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台