|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103 |
- /**
- * \file example/cpp_example/reset_io.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- */
-
- #include "example.h"
- #if LITE_BUILD_WITH_MGE
-
- using namespace lite;
- using namespace example;
-
- namespace {
-
- bool reset_input(const Args& args) {
- std::string network_path = args.model_path;
- std::string input_path = args.input_path;
- lite::Config config;
-
- //! create and load the network
- std::shared_ptr<Network> network = std::make_shared<Network>(config);
- network->load_model(network_path);
-
- //! set input data to input tensor
- std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
- auto layout = input_tensor->get_layout();
-
- auto src_tensor = parse_npy(input_path);
- void* src = src_tensor->get_memory_ptr();
- input_tensor->reset(src, layout);
-
- //! forward
- network->forward();
- network->wait();
-
- //! 6. get the output data or read tensor set in network_in
- std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
- void* out_data = output_tensor->get_memory_ptr();
- size_t out_length = output_tensor->get_tensor_total_size_in_byte() /
- output_tensor->get_layout().get_elem_size();
- float max = -1.0f;
- float sum = 0.0f;
- for (size_t i = 0; i < out_length; i++) {
- float data = static_cast<float*>(out_data)[i];
- sum += data;
- if (max < data)
- max = data;
- }
- printf("max=%e, sum=%e\n", max, sum);
- return true;
- }
-
- bool reset_input_output(const Args& args) {
- std::string network_path = args.model_path;
- std::string input_path = args.input_path;
- lite::Config config;
-
- //! create and load the network
- std::shared_ptr<Network> network = std::make_shared<Network>(config);
- network->load_model(network_path);
-
- //! set input data to input tensor
- std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
- auto layout = input_tensor->get_layout();
-
- auto src_tensor = parse_npy(input_path);
- void* src = src_tensor->get_memory_ptr();
- input_tensor->reset(src, layout);
-
- //! set output ptr to store the network output
- std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
- auto result_tensor = std::make_shared<Tensor>(
- LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
-
- void* out_data = result_tensor->get_memory_ptr();
- output_tensor->reset(out_data, result_tensor->get_layout());
-
- network->forward();
- network->wait();
-
- float max = -1.0f;
- float sum = 0.0f;
- for (size_t i = 0; i < 1000; i++) {
- float data = static_cast<float*>(out_data)[i];
- sum += data;
- if (max < data)
- max = data;
- }
- printf("max=%e, sum=%e\n", max, sum);
- return true;
- }
- } // namespace
-
- REGIST_EXAMPLE("reset_input", reset_input);
- REGIST_EXAMPLE("reset_input_output", reset_input_output);
-
- #endif
- // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}
|