You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

network_visualize.py 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347
  1. #! /usr/bin/env python3
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import argparse
  10. import logging
  11. import re
  12. from collections import namedtuple
  13. import numpy as np
  14. from tqdm import tqdm
  15. import megengine as mge
  16. from megengine.core.tensor.dtype import is_quantize
  17. from megengine.logger import _imperative_rt_logger, get_logger, set_mgb_log_level
  18. from megengine.utils.module_stats import (
  19. enable_receptive_field,
  20. get_activation_stats,
  21. get_op_stats,
  22. get_param_stats,
  23. print_activations_stats,
  24. print_op_stats,
  25. print_param_stats,
  26. print_summary,
  27. sizeof_fmt,
  28. sum_activations_stats,
  29. sum_op_stats,
  30. sum_param_stats,
  31. )
  32. from megengine.utils.network import Network
  33. logger = get_logger(__name__)
  34. def visualize(
  35. model_path: str,
  36. log_path: str,
  37. input: np.ndarray = None,
  38. inp_dict: dict = None,
  39. cal_params: bool = True,
  40. cal_flops: bool = True,
  41. cal_activations: bool = True,
  42. logging_to_stdout: bool = True,
  43. bar_length_max: int = 20,
  44. ):
  45. r"""Load megengine dumped model and visualize graph structure with tensorboard log files.
  46. Can also record and print model's statistics like :func:`~.module_stats`
  47. Args:
  48. model_path: dir path for megengine dumped model.
  49. log_path: dir path for tensorboard graph log.
  50. input: user defined input data for running model and calculating stats,
  51. alternative with inp_dict, used when the model has only one input.
  52. inp_dict: input dict for running model and calculating stats, alternative with
  53. input, used when the model has more than one input.
  54. When both input and inp_dict are None, a random input will be used.
  55. cal_params: whether calculate and record params size.
  56. cal_flops: whether calculate and record op flops.
  57. cal_activations: whether calculate and record op activations.
  58. logging_to_stdout: whether print all calculated statistic details.
  59. bar_length_max: size of bar indicating max flops or parameter size in net stats.
  60. model_path: str:
  61. log_path: str:
  62. input: np.ndarray:
  63. inp_dict: dict:
  64. cal_params: bool:
  65. cal_flops: bool:
  66. cal_activations: bool:
  67. logging_to_stdout: bool:
  68. bar_length_max: int:
  69. """
  70. if log_path:
  71. try:
  72. from tensorboard.compat.proto.attr_value_pb2 import AttrValue
  73. from tensorboard.compat.proto.config_pb2 import RunMetadata
  74. from tensorboard.compat.proto.graph_pb2 import GraphDef
  75. from tensorboard.compat.proto.node_def_pb2 import NodeDef
  76. from tensorboard.compat.proto.step_stats_pb2 import (
  77. AllocatorMemoryUsed,
  78. DeviceStepStats,
  79. NodeExecStats,
  80. StepStats,
  81. )
  82. from tensorboard.compat.proto.tensor_shape_pb2 import TensorShapeProto
  83. from tensorboard.compat.proto.versions_pb2 import VersionDef
  84. from tensorboardX import SummaryWriter
  85. except ImportError:
  86. logger.error(
  87. "TensorBoard and TensorboardX are required for visualize.",
  88. exc_info=True,
  89. )
  90. return
  91. enable_receptive_field()
  92. graph = Network.load(model_path)
  93. graph.reset_batch_size(1)
  94. has_input = False
  95. if input is not None or inp_dict is not None:
  96. has_input = True
  97. repl_dict = {}
  98. inp_vars = graph.input_vars
  99. if inp_dict is not None:
  100. assert len(inp_dict) == len(
  101. inp_vars
  102. ), "Inputs are not sufficient for calculation."
  103. for v in inp_vars:
  104. new_input = graph.make_const(inp_dict[v.name], name=v.name)
  105. repl_dict[v] = new_input
  106. else:
  107. assert len(inp_vars) == 1, "The graph needs more than one input."
  108. inp_var = inp_vars[0]
  109. repl_dict[inp_var] = graph.make_const(input, name=inp_var.name)
  110. graph.replace_vars(repl_dict=repl_dict)
  111. graph._compile()
  112. def process_name(name):
  113. # nodes that start with point or contain float const will lead to display bug
  114. if not re.match(r"^[+-]?\d*\.\d*", name):
  115. name = name.replace(".", "/")
  116. return name.encode(encoding="utf-8")
  117. summary = [["item", "value"]]
  118. node_list = []
  119. flops_list = []
  120. params_list = []
  121. activations_list = []
  122. total_stats = namedtuple(
  123. "total_stats", ["param_size", "param_dims", "flops", "act_size", "act_dims"]
  124. )
  125. stats_details = namedtuple("module_stats", ["params", "flops", "activations"])
  126. for node in tqdm(graph.all_oprs):
  127. if hasattr(node, "output_idx"):
  128. node_oup = node.outputs[node.output_idx]
  129. else:
  130. if len(node.outputs) != 1:
  131. logger.warning(
  132. "OpNode {} has more than one output and not has 'output_idx' attr.".format(
  133. node
  134. )
  135. )
  136. node_oup = node.outputs[0]
  137. inp_list = [process_name(var.owner.name) for var in node.inputs]
  138. if log_path:
  139. # detail format see tensorboard/compat/proto/attr_value.proto
  140. attr = {
  141. "_output_shapes": AttrValue(
  142. list=AttrValue.ListValue(
  143. shape=[
  144. TensorShapeProto(
  145. dim=[
  146. TensorShapeProto.Dim(size=d) for d in node_oup.shape
  147. ]
  148. )
  149. ]
  150. )
  151. ),
  152. "params": AttrValue(s=str(node.params).encode(encoding="utf-8")),
  153. "dtype": AttrValue(s=str(node_oup.dtype).encode(encoding="utf-8")),
  154. }
  155. if cal_flops:
  156. flops_stats = get_op_stats(node, node.inputs, node.outputs)
  157. if flops_stats is not None:
  158. # add op flops attr
  159. if log_path and hasattr(flops_stats, "flops_num"):
  160. attr["flops"] = AttrValue(
  161. s=sizeof_fmt(flops_stats["flops"]).encode(encoding="utf-8")
  162. )
  163. flops_stats["name"] = node.name
  164. flops_stats["class_name"] = node.type
  165. flops_list.append(flops_stats)
  166. if cal_activations:
  167. acts = get_activation_stats(node_oup, has_input=has_input)
  168. acts["name"] = node.name
  169. acts["class_name"] = node.type
  170. activations_list.append(acts)
  171. if cal_params:
  172. if node.type == "ImmutableTensor":
  173. param_stats = get_param_stats(node_oup)
  174. # add tensor size attr
  175. if log_path:
  176. attr["size"] = AttrValue(
  177. s=sizeof_fmt(param_stats["size"]).encode(encoding="utf-8")
  178. )
  179. param_stats["name"] = node.name
  180. params_list.append(param_stats)
  181. if log_path:
  182. node_list.append(
  183. NodeDef(
  184. name=process_name(node.name),
  185. op=node.type,
  186. input=inp_list,
  187. attr=attr,
  188. )
  189. )
  190. # summary
  191. extra_info = {
  192. "#ops": len(graph.all_oprs),
  193. "#params": len(params_list),
  194. }
  195. (
  196. total_flops,
  197. total_param_dims,
  198. total_param_size,
  199. total_act_dims,
  200. total_act_size,
  201. ) = (0, 0, 0, 0, 0)
  202. if cal_params:
  203. total_param_dims, total_param_size, params_list = sum_param_stats(
  204. params_list, bar_length_max
  205. )
  206. extra_info["total_param_dims"] = sizeof_fmt(total_param_dims, suffix="")
  207. extra_info["total_param_size"] = sizeof_fmt(total_param_size)
  208. if logging_to_stdout:
  209. print_param_stats(params_list)
  210. if cal_flops:
  211. total_flops, flops_list = sum_op_stats(flops_list, bar_length_max)
  212. extra_info["total_flops"] = sizeof_fmt(total_flops, suffix="OPs")
  213. if logging_to_stdout:
  214. print_op_stats(flops_list)
  215. if cal_activations:
  216. total_act_dims, total_act_size, activations_list = sum_activations_stats(
  217. activations_list, bar_length_max
  218. )
  219. extra_info["total_act_dims"] = sizeof_fmt(total_act_dims, suffix="")
  220. extra_info["total_act_size"] = sizeof_fmt(total_act_size)
  221. if logging_to_stdout:
  222. print_activations_stats(activations_list, has_input=has_input)
  223. if cal_flops and cal_params:
  224. extra_info["flops/param_size"] = "{:3.3f}".format(
  225. total_flops / total_param_size
  226. )
  227. if log_path:
  228. graph_def = GraphDef(node=node_list, versions=VersionDef(producer=22))
  229. device = "/device:CPU:0"
  230. stepstats = RunMetadata(
  231. step_stats=StepStats(dev_stats=[DeviceStepStats(device=device)])
  232. )
  233. writer = SummaryWriter(log_path)
  234. writer._get_file_writer().add_graph((graph_def, stepstats))
  235. print_summary(**extra_info)
  236. return (
  237. total_stats(
  238. param_size=total_param_size,
  239. param_dims=total_param_dims,
  240. flops=total_flops,
  241. act_size=total_act_size,
  242. act_dims=total_act_dims,
  243. ),
  244. stats_details(
  245. params=params_list, flops=flops_list, activations=activations_list
  246. ),
  247. )
  248. def main():
  249. parser = argparse.ArgumentParser(
  250. description="load a megengine dumped model and export log file for tensorboard visualization.",
  251. formatter_class=argparse.ArgumentDefaultsHelpFormatter,
  252. )
  253. parser.add_argument("model_path", help="dumped model path.")
  254. parser.add_argument("--log_path", help="tensorboard log path.")
  255. parser.add_argument(
  256. "--load_input_data",
  257. help="load input data from pickle file; it should be a numpy array or a dict of numpy array",
  258. )
  259. parser.add_argument(
  260. "--bar_length_max",
  261. type=int,
  262. default=20,
  263. help="size of bar indicating max flops or parameter size in net stats.",
  264. )
  265. parser.add_argument(
  266. "--cal_params",
  267. action="store_true",
  268. help="whether calculate and record params size.",
  269. )
  270. parser.add_argument(
  271. "--cal_flops",
  272. action="store_true",
  273. help="whether calculate and record op flops.",
  274. )
  275. parser.add_argument(
  276. "--cal_activations",
  277. action="store_true",
  278. help="whether calculate and record op activations.",
  279. )
  280. parser.add_argument(
  281. "--logging_to_stdout",
  282. action="store_true",
  283. help="whether print all calculated statistic details.",
  284. )
  285. parser.add_argument(
  286. "--all",
  287. action="store_true",
  288. help="whether print all stats. Tensorboard logs will be placed in './log' if not specified.",
  289. )
  290. args = parser.parse_args()
  291. if args.load_input_data:
  292. logger.info("load data from {}".format(args.load_input_data))
  293. data = mge.load(args.load_input_data)
  294. if isinstance(data, dict):
  295. for v in data.values():
  296. assert isinstance(
  297. v, np.ndarray
  298. ), "data should provide ndarray; got {} instead".format(v)
  299. args.inp_dict = data
  300. elif isinstance(data, np.ndarray):
  301. args.input = data
  302. else:
  303. logger.error("input data should be a numpy array or a dict of numpy array")
  304. if args.all:
  305. args.cal_params = True
  306. args.cal_flops = True
  307. args.cal_activations = True
  308. args.logging_to_stdout = True
  309. if not args.log_path:
  310. args.log_path = "./log"
  311. kwargs = vars(args)
  312. kwargs.pop("all")
  313. kwargs.pop("load_input_data")
  314. visualize(**kwargs)
  315. if __name__ == "__main__":
  316. main()