You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

base.h 21 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604
  1. /**
  2. * \file dnn/include/megdnn/oprs/base.h
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #pragma once
  13. #include <type_traits>
  14. #include "megdnn/basic_types.h"
  15. #include "megdnn/handle.h"
  16. #include "megdnn/internal/visibility_prologue.h"
  17. namespace megdnn {
  18. class Handle;
  19. /**
  20. * \brief base class for all operators
  21. *
  22. * This is an helper class. Users should not use OperatorBase directly.
  23. * Operators should be created by handle->create_opr<>().
  24. *
  25. * Each operator must provides the following constexpr values:
  26. *
  27. * * NR_INPUTS: number of input vars
  28. * * NR_OUTPUTS: number of output vars
  29. * * OPERATOR_TYPE: operator type as an enum
  30. *
  31. * If the operator has dynamic inputs or in_out param, the corresponding
  32. * NR_INPUTS is -1.
  33. *
  34. * For an operator whose NR_INPUTS >= 0 and NR_OUTPUTS >= 0, the operator must
  35. * also provide following methods:
  36. *
  37. * * void exec(_megdnn_in inputs..., _megdnn_tensor_out outputs...,
  38. * _megdnn_workspace workspace)
  39. * * void deduce_layout(const TensorLayout& inputs...,
  40. * TensorLayout& outputs...)
  41. * * size_t get_workspace_in_bytes(const TensorLayout &inputs...,
  42. * const TensorLayout &outputs)
  43. */
  44. class OperatorBase {
  45. public:
  46. explicit OperatorBase(Handle* handle) : m_handle(handle) {}
  47. virtual ~OperatorBase();
  48. //! get the handle from which this operator is created
  49. Handle* handle() const { return m_handle; }
  50. //! whether this opr guarantees that its exec() is thread-safe
  51. virtual bool is_thread_safe() const { return false; }
  52. /*!
  53. * \brief set the tracker to be used with MegcoreAsyncErrorInfo
  54. *
  55. * Most operators do not have async errors so this function has a
  56. * default empty implementation.
  57. */
  58. virtual void set_error_tracker(void*) {}
  59. private:
  60. Handle* m_handle;
  61. };
  62. namespace detail {
  63. /**
  64. * \brief AlgoSelectionStrategy is the advance information for selecting
  65. * algo
  66. */
  67. enum class AlgoSelectionStrategy {
  68. HEURISTIC = 0, //!< heristic to select the algos
  69. FAST_RUN = 1,
  70. FULL_RUN = 2,
  71. };
  72. /**
  73. * \brief separate algo by datatype for Matmul and conv
  74. */
  75. enum class AlgoDataType : uint32_t {
  76. FLOAT32 = 1 << 0,
  77. FLOAT16 = 1 << 1,
  78. QINT8X8X32 = 1 << 2,
  79. QUINT8X8X32 = 1 << 3,
  80. INT8X8X16 = 1 << 4,
  81. INT16X16X32 = 1 << 5,
  82. INT4X4X16 = 1 << 6,
  83. QINT4x4x32 = 1 << 7,
  84. };
  85. /*!
  86. * \brief Abstract representation of an algorithm for implementing
  87. * the operator
  88. */
  89. class Algorithm {
  90. public:
  91. static constexpr uint32_t INVALID_ALGO_TYPE = static_cast<uint32_t>(-1);
  92. /**
  93. * \brief the attribe of the algo, such as REPRODUCIBLE, NAIVE
  94. *
  95. */
  96. enum class Attribute : uint32_t {
  97. /**
  98. * \brief general algo.
  99. */
  100. DEFAULT = 0,
  101. /**
  102. * \brief whether the execution result is
  103. * reproducible across multiple runs.
  104. */
  105. REPRODUCIBLE = 1 << 0,
  106. /**
  107. * \brief whether the algo is naive
  108. * Mark algorithms with simple implementation as NAIVE, so we can filter
  109. * these algorithms to speed up fastrun.
  110. * */
  111. NAIVE = 1 << 1,
  112. /**
  113. * \brief whether the algo is usable once shape changed.
  114. * */
  115. USABLE_DEPEND_ON_SHAPE = 1 << 2,
  116. /**
  117. * \brief whether the accuracy of the algo is dependent with respect
  118. * to batch
  119. * In the case of using algorithm with this attribute, even if the
  120. * content of each batch is the same, the output under multiple batch
  121. * input and single batch input may not equal
  122. * */
  123. ACCURACY_DEPEND_ON_BATCH = 1 << 3,
  124. };
  125. /**
  126. * \brief Algorithm information, we can get real algo from
  127. * AlgorithmInfo::Info::Desc
  128. */
  129. struct Info {
  130. struct Desc {
  131. //! backend of the algo belonging to
  132. Handle::HandleType handle_type;
  133. //! indicate the real algo implementation
  134. uint32_t type = INVALID_ALGO_TYPE;
  135. //! serialized param of the algo type
  136. std::string param;
  137. //! algorithm name
  138. std::string name;
  139. bool valid() const { return type != INVALID_ALGO_TYPE; }
  140. void reset() { type = INVALID_ALGO_TYPE; }
  141. bool operator==(const Desc& rhs) const {
  142. return handle_type == rhs.handle_type && type == rhs.type &&
  143. param == rhs.param && name == rhs.name;
  144. }
  145. } desc;
  146. Attribute attribute;
  147. bool valid() const { return desc.valid(); }
  148. void reset() { desc.reset(); }
  149. //! desc donate the algo
  150. bool operator==(const Info& rhs) const { return desc == rhs.desc; }
  151. };
  152. virtual ~Algorithm() = default;
  153. /**
  154. * \brief get the attribute of the algo
  155. */
  156. virtual Attribute attribute() const = 0;
  157. virtual const char* name() const = 0;
  158. //! serialized param
  159. virtual std::string param() const { return {}; }
  160. virtual uint32_t type() const = 0;
  161. //! if algo contain all of the attribute in attr
  162. bool contain_attribute_all(const Attribute& attr) const;
  163. //! if algo contain any attribute in attr
  164. bool contain_attribute_any(const Attribute& attr) const;
  165. void check_attribute(
  166. const Attribute& positive_attr = Attribute::DEFAULT,
  167. const Attribute& negative_attr = Attribute::DEFAULT) const;
  168. static std::string attribute_str(const Attribute& attr);
  169. Handle::HandleType handle_type() const { return m_handle_type; }
  170. Info::Desc desc() const { return {handle_type(), type(), param(), name()}; }
  171. Info info() const {
  172. return {desc(), attribute()};
  173. }
  174. template <typename T>
  175. static void serialize_write_pod(const T& val, std::string& result) {
  176. static_assert(std::is_trivially_copyable<T>::value,
  177. "type should be trivially copyable");
  178. static_assert(!std::is_pointer<T>::value,
  179. "serialize pointer is unsafe in eager execution mode");
  180. result.append(reinterpret_cast<const char*>(&val), sizeof(T));
  181. }
  182. static void serialize_write_pod(const char* val, std::string& result) {
  183. result.append(val, strlen(val));
  184. }
  185. template <typename T>
  186. static T deserialize_read_pod(const std::string& data, size_t offset = 0) {
  187. static_assert(std::is_trivially_copyable<T>::value, "invalid type");
  188. T ret;
  189. //! A pointer to an object or incomplete type may be converted to a
  190. //! pointer to a different object or incomplete type. If the resulting
  191. //! pointer is not correctly aligned for the pointed-to type, the
  192. //! behavior is undefined.
  193. //!
  194. //! so here we should use memcpy instead of
  195. //! *reinterpret_cast<const T*>(&data[offset]);
  196. memcpy(&ret, data.data() + offset, sizeof(T));
  197. return ret;
  198. }
  199. template <typename T>
  200. static T deserialize_read_pod(const char* data, size_t offset = 0) {
  201. static_assert(std::is_trivially_copyable<T>::value, "invalid type");
  202. T ret;
  203. //! A pointer to an object or incomplete type may be converted to a
  204. //! pointer to a different object or incomplete type. If the resulting
  205. //! pointer is not correctly aligned for the pointed-to type, the
  206. //! behavior is undefined.
  207. //!
  208. //! so here we should use memcpy instead of
  209. //! *reinterpret_cast<const T*>(&data[offset]);
  210. memcpy(&ret, data + offset, sizeof(T));
  211. return ret;
  212. }
  213. enum class OprType : uint32_t {
  214. MATRIX_MUL_FORWARD,
  215. BATCHED_MATRIX_MUL_FORWARD,
  216. CONVOLUTION_FORWARD,
  217. CONVOLUTION_BACKWARD_DATA,
  218. CONVOLUTION_BACKWARD_FILTER,
  219. CONVOLUTION3D_FORWARD,
  220. CONVOLUTION3D_BACKWARD_DATA,
  221. CONVOLUTION3D_BACKWARD_FILTER,
  222. LOCAL_SHARE_FORWARD,
  223. LOCAL_SHARE_BACKWARD_DATA,
  224. LOCAL_SHARE_BACKWARD_FILTER,
  225. DEFORMABLE_CONV_FORWARD,
  226. DEFORMABLE_CONV_BACKWARD_DATA,
  227. DEFORMABLE_CONV_BACKWARD_FILTER,
  228. CONVBIAS_FORWARD,
  229. BATCH_CONV_FORWARD,
  230. };
  231. struct SearchItem {
  232. OprType opr_type;
  233. //! serialized param
  234. std::string param;
  235. TensorLayoutArray layouts;
  236. };
  237. /**
  238. * \brief get subopr list of the algo
  239. *
  240. * \param layouts origin layouts of the parent opr
  241. * \param opr parent opr
  242. */
  243. virtual std::vector<SearchItem> get_subopr_list(const TensorLayoutArray&,
  244. const OperatorBase*) const {
  245. return {};
  246. }
  247. protected:
  248. Handle::HandleType m_handle_type = Handle::HandleType::NAIVE;
  249. };
  250. MEGDNN_DEF_ENUM_CLASS_BIT_OPR(Algorithm::Attribute)
  251. //! policy for executing the operator
  252. struct ExecutionPolicy {
  253. //! INVALID_ALGO_TYPE algo_type means using heuristic
  254. Algorithm::Info::Desc algo;
  255. std::vector<ExecutionPolicy> sub_policy;
  256. };
  257. /*!
  258. * \brief define Algorithm and ExecutionPolicy for oprs that have
  259. * multiple impl algos
  260. *
  261. * \tparam Opr the operator class
  262. * \tparam nargs number of arguments
  263. */
  264. template <class Opr, int nargs>
  265. class MultiAlgoOpr;
  266. //! base def
  267. template <class Opr>
  268. class MultiAlgoOpr<Opr, -1> {
  269. public:
  270. using AlgorithmInfo = detail::Algorithm::Info;
  271. using AlgorithmDesc = detail::Algorithm::Info::Desc;
  272. using Algorithm = detail::Algorithm;
  273. /*!
  274. * \brief get a string representation for current algorithm set;
  275. *
  276. * get_all_algorithms() may return different algorithms only if
  277. * algorithm set name differs. This is used for checking cache
  278. * validity.
  279. */
  280. virtual const char* get_algorithm_set_name() const = 0;
  281. ExecutionPolicy& execution_policy() { return m_execution_policy; }
  282. const ExecutionPolicy& execution_policy() const {
  283. return m_execution_policy;
  284. }
  285. virtual Algorithm* get_algorithm_from_desc(const AlgorithmDesc&) = 0;
  286. protected:
  287. ~MultiAlgoOpr() = default;
  288. private:
  289. ExecutionPolicy m_execution_policy;
  290. };
  291. //! specialize for nargs == 3
  292. template <class Opr>
  293. class MultiAlgoOpr<Opr, 3> : public MultiAlgoOpr<Opr, -1> {
  294. public:
  295. using Algorithm = detail::Algorithm;
  296. using AlgorithmInfo = detail::Algorithm::Info;
  297. using AlgoAttribute = detail::Algorithm::Attribute;
  298. //! get all possible algorithm decriptions for the specified layouts
  299. std::vector<AlgorithmInfo> get_all_algorithms_info(const TensorLayout& p0,
  300. const TensorLayout& p1,
  301. const TensorLayout& p2) {
  302. std::vector<AlgorithmInfo> ret;
  303. for (auto&& algo : get_all_algorithms(p0, p1, p2)) {
  304. ret.emplace_back(algo->info());
  305. }
  306. return ret;
  307. }
  308. /**
  309. * \brief Returns the best algorithm information which indicate the
  310. * algorithm by heuristic.
  311. *
  312. * The selected algorithm should not use workspace more than
  313. * \p workspace_limit_in_bytes.
  314. */
  315. AlgorithmInfo get_algorithm_info_heuristic(
  316. const TensorLayout& p0, const TensorLayout& p1,
  317. const TensorLayout& p2,
  318. size_t workspace_limit_in_bytes =
  319. std::numeric_limits<size_t>::max(),
  320. const AlgoAttribute& positive_attr = AlgoAttribute::DEFAULT,
  321. const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT) {
  322. return get_algorithm_heuristic(p0, p1, p2, workspace_limit_in_bytes,
  323. positive_attr, negative_attr)
  324. ->info();
  325. }
  326. protected:
  327. ~MultiAlgoOpr() = default;
  328. //! get all possible algorithms for the specified layouts
  329. virtual std::vector<Algorithm*> get_all_algorithms(
  330. const TensorLayout& p0, const TensorLayout& p1,
  331. const TensorLayout& p2) = 0;
  332. /**
  333. * \brief Returns the best algorithm by heuristic.
  334. *
  335. * The selected algorithm should not use workspace more than
  336. * \p workspace_limit_in_bytes.
  337. */
  338. virtual Algorithm* get_algorithm_heuristic(
  339. const TensorLayout& p0, const TensorLayout& p1,
  340. const TensorLayout& p2,
  341. size_t workspace_limit_in_bytes =
  342. std::numeric_limits<size_t>::max(),
  343. const AlgoAttribute& positive_attr = AlgoAttribute::DEFAULT,
  344. const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT) = 0;
  345. };
  346. //! specializae for nargs == 4
  347. template <class Opr>
  348. class MultiAlgoOpr<Opr, 4> : public MultiAlgoOpr<Opr, -1> {
  349. public:
  350. using Algorithm = detail::Algorithm;
  351. using AlgorithmInfo = detail::Algorithm::Info;
  352. using AlgoAttribute = detail::Algorithm::Attribute;
  353. //! get all possible algorithm decriptions for the specified layouts
  354. std::vector<AlgorithmInfo> get_all_algorithms_info(const TensorLayout& p0,
  355. const TensorLayout& p1,
  356. const TensorLayout& p2,
  357. const TensorLayout& p3) {
  358. std::vector<AlgorithmInfo> ret;
  359. for (auto&& algo : get_all_algorithms(p0, p1, p2, p3)) {
  360. ret.emplace_back(algo->info());
  361. }
  362. return ret;
  363. }
  364. /**
  365. * \brief Returns the best algorithm information which indicate the
  366. * algorithm by heuristic.
  367. *
  368. * The selected algorithm should not use workspace more than
  369. * \p workspace_limit_in_bytes.
  370. */
  371. AlgorithmInfo get_algorithm_info_heuristic(
  372. const TensorLayout& p0, const TensorLayout& p1,
  373. const TensorLayout& p2, const TensorLayout& p3,
  374. size_t workspace_limit_in_bytes =
  375. std::numeric_limits<size_t>::max(),
  376. const AlgoAttribute& positive_attr = AlgoAttribute::DEFAULT,
  377. const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT) {
  378. return get_algorithm_heuristic(p0, p1, p2, p3, workspace_limit_in_bytes,
  379. positive_attr, negative_attr)
  380. ->info();
  381. }
  382. protected:
  383. ~MultiAlgoOpr() = default;
  384. //! get all possible algorithms for the specified layouts
  385. virtual std::vector<Algorithm*> get_all_algorithms(
  386. const TensorLayout& p0, const TensorLayout& p1,
  387. const TensorLayout& p2, const TensorLayout& p3) = 0;
  388. /**
  389. * \brief Returns the best algorithm by heuristic.
  390. *
  391. * The selected algorithm should not use workspace more than
  392. * \p workspace_limit_in_bytes.
  393. */
  394. virtual Algorithm* get_algorithm_heuristic(
  395. const TensorLayout& p0, const TensorLayout& p1,
  396. const TensorLayout& p2, const TensorLayout& p3,
  397. size_t workspace_limit_in_bytes =
  398. std::numeric_limits<size_t>::max(),
  399. const AlgoAttribute& positive_attr = AlgoAttribute::DEFAULT,
  400. const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT) = 0;
  401. };
  402. //! specializae for nargs == 5
  403. template <class Opr>
  404. class MultiAlgoOpr<Opr, 5> : public MultiAlgoOpr<Opr, -1> {
  405. public:
  406. using Algorithm = detail::Algorithm;
  407. using AlgorithmInfo = detail::Algorithm::Info;
  408. using AlgoAttribute = detail::Algorithm::Attribute;
  409. //! get all possible algorithm decriptions for the specified layouts
  410. std::vector<AlgorithmInfo> get_all_algorithms_info(const TensorLayout& p0,
  411. const TensorLayout& p1,
  412. const TensorLayout& p2,
  413. const TensorLayout& p3,
  414. const TensorLayout& p4) {
  415. std::vector<AlgorithmInfo> ret;
  416. for (auto&& algo : get_all_algorithms(p0, p1, p2, p3, p4)) {
  417. ret.emplace_back(algo->info());
  418. }
  419. return ret;
  420. }
  421. /**
  422. * \brief Returns the best algorithm information which indicate the
  423. * algorithm by heuristic.
  424. *
  425. * The selected algorithm should not use workspace more than
  426. * \p workspace_limit_in_bytes.
  427. */
  428. AlgorithmInfo get_algorithm_info_heuristic(
  429. const TensorLayout& p0, const TensorLayout& p1,
  430. const TensorLayout& p2, const TensorLayout& p3,
  431. const TensorLayout& p4,
  432. size_t workspace_limit_in_bytes =
  433. std::numeric_limits<size_t>::max(),
  434. const AlgoAttribute& positive_attr = AlgoAttribute::DEFAULT,
  435. const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT) {
  436. return get_algorithm_heuristic(p0, p1, p2, p3, p4,
  437. workspace_limit_in_bytes, positive_attr,
  438. negative_attr)
  439. ->info();
  440. }
  441. protected:
  442. ~MultiAlgoOpr() = default;
  443. //! get all possible algorithms for the specified layouts
  444. virtual std::vector<Algorithm*> get_all_algorithms(
  445. const TensorLayout& p0, const TensorLayout& p1,
  446. const TensorLayout& p2, const TensorLayout& p3,
  447. const TensorLayout& p4) = 0;
  448. /**
  449. * \brief Returns the best algorithm by heuristic.
  450. *
  451. * The selected algorithm should not use workspace more than
  452. * \p workspace_limit_in_bytes.
  453. */
  454. virtual Algorithm* get_algorithm_heuristic(
  455. const TensorLayout& p0, const TensorLayout& p1,
  456. const TensorLayout& p2, const TensorLayout& p3,
  457. const TensorLayout& p4,
  458. size_t workspace_limit_in_bytes =
  459. std::numeric_limits<size_t>::max(),
  460. const AlgoAttribute& positive_attr = AlgoAttribute::DEFAULT,
  461. const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT) = 0;
  462. };
  463. //! specializae for nargs == 8
  464. template <class Opr>
  465. class MultiAlgoOpr<Opr, 8> : public MultiAlgoOpr<Opr, -1> {
  466. public:
  467. using Algorithm = detail::Algorithm;
  468. using AlgorithmInfo = detail::Algorithm::Info;
  469. using AlgoAttribute = detail::Algorithm::Attribute;
  470. //! get all possible algorithm decriptions for the specified layouts
  471. std::vector<AlgorithmInfo> get_all_algorithms_info(
  472. const TensorLayout& p0, const TensorLayout& p1,
  473. const TensorLayout& p2, const TensorLayout& p3,
  474. const TensorLayout& p4, const TensorLayout& p5,
  475. const TensorLayout& p6, const TensorLayout& p7) {
  476. std::vector<AlgorithmInfo> ret;
  477. for (auto&& algo : get_all_algorithms(p0, p1, p2, p3, p4, p5, p6, p7)) {
  478. ret.emplace_back(algo->info());
  479. }
  480. return ret;
  481. }
  482. /**
  483. * \brief Returns the best algorithm information which indicate the
  484. * algorithm by heuristic.
  485. *
  486. * The selected algorithm should not use workspace more than
  487. */
  488. AlgorithmInfo get_algorithm_info_heuristic(
  489. const TensorLayout& p0, const TensorLayout& p1,
  490. const TensorLayout& p2, const TensorLayout& p3,
  491. const TensorLayout& p4, const TensorLayout& p5,
  492. const TensorLayout& p6, const TensorLayout& p7,
  493. size_t workspace_limit_in_bytes =
  494. std::numeric_limits<size_t>::max(),
  495. const AlgoAttribute& positive_attr = AlgoAttribute::DEFAULT,
  496. const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT) {
  497. return get_algorithm_heuristic(p0, p1, p2, p3, p4, p5, p6, p7,
  498. workspace_limit_in_bytes, positive_attr,
  499. negative_attr)
  500. ->info();
  501. }
  502. protected:
  503. ~MultiAlgoOpr() = default;
  504. //! get all possible algorithms for the specified layouts
  505. virtual std::vector<Algorithm*> get_all_algorithms(
  506. const TensorLayout& p0, const TensorLayout& p1,
  507. const TensorLayout& p2, const TensorLayout& p3,
  508. const TensorLayout& p4, const TensorLayout& p5,
  509. const TensorLayout& p6, const TensorLayout& p7) = 0;
  510. /**
  511. * \brief Returns the best algorithm by heuristic.
  512. *
  513. * The selected algorithm should not use workspace more than
  514. * \p workspace_limit_in_bytes.
  515. */
  516. virtual Algorithm* get_algorithm_heuristic(
  517. const TensorLayout& p0, const TensorLayout& p1,
  518. const TensorLayout& p2, const TensorLayout& p3,
  519. const TensorLayout& p4, const TensorLayout& p5,
  520. const TensorLayout& p6, const TensorLayout& p7,
  521. size_t workspace_limit_in_bytes =
  522. std::numeric_limits<size_t>::max(),
  523. const AlgoAttribute& positive_attr = AlgoAttribute::DEFAULT,
  524. const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT) = 0;
  525. };
  526. } // namespace detail
  527. using Algorithm = detail::Algorithm;
  528. using AlgoAttribute = Algorithm::Attribute;
  529. using ExecutionPolicy = detail::ExecutionPolicy;
  530. } // namespace megdnn
  531. #include "megdnn/internal/visibility_epilogue.h"
  532. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台