You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dataloader.py 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import collections
  10. import gc
  11. import math
  12. import multiprocessing
  13. import platform
  14. import queue
  15. import random
  16. import threading
  17. import time
  18. from typing import Callable
  19. import numpy as np
  20. from ..logger import get_logger
  21. from ..random.rng import _random_seed_generator
  22. from .collator import Collator
  23. from .dataset import Dataset, StreamDataset
  24. from .sampler import MapSampler, Sampler, SequentialSampler, StreamSampler
  25. from .transform import PseudoTransform, Transform
  26. try:
  27. import thread
  28. except:
  29. import _thread as thread
  30. logger = get_logger(__name__)
  31. GLOBAL_TIMEOUT = 5
  32. def raise_timeout_error():
  33. raise RuntimeError("dataloader timeout")
  34. class DataLoader:
  35. r"""
  36. Provides a convenient way to iterate on a given dataset.
  37. """
  38. __initialized = False
  39. def __init__(
  40. self,
  41. dataset: Dataset,
  42. sampler: Sampler = None,
  43. transform: Transform = None,
  44. collator: Collator = None,
  45. num_workers: int = 0,
  46. timeout: int = 0,
  47. timeout_event: Callable = raise_timeout_error,
  48. divide: bool = False,
  49. ):
  50. r"""
  51. `DataLoader` combines a dataset with `sampler`, `transform` and `collator`,
  52. make it flexible to get minibatch continually from a dataset.
  53. :type dataset: Dataset
  54. :param dataset: dataset from which to load the minibatch.
  55. :type sampler: Sampler
  56. :param sampler: defines the strategy to sample data from the dataset.
  57. :type transform: Transform
  58. :param transform: defined the transforming strategy for a sampled batch.
  59. Default: None
  60. :type collator: Collator
  61. :param collator: defined the merging strategy for a transformed batch.
  62. Default: None
  63. :type num_workers: int
  64. :param num_workers: the number of sub-process to load, transform and collate
  65. the batch. ``0`` means using single-process. Default: 0
  66. :type timeout: int
  67. :param timeout: if positive, means the timeout value(second) for collecting a
  68. batch from workers. Default: 0
  69. :type timeout_event: Callable
  70. :param timeout_event: callback function triggered by timeout, default to raise
  71. runtime error.
  72. :type divide: bool
  73. :param divide: define the paralleling strategy in multi-processing mode.
  74. ``True`` means one batch is divided into :attr:`num_workers` pieces, and
  75. the workers will process these pieces parallelly. ``False`` means
  76. different sub-process will process different batch. Default: False
  77. """
  78. if num_workers < 0:
  79. raise ValueError("num_workers should not be negative")
  80. if timeout < 0:
  81. raise ValueError("timeout should not be negative")
  82. if divide and num_workers <= 1:
  83. raise ValueError("divide should not be set to True when num_workers <= 1")
  84. self.dataset = dataset
  85. self.num_workers = num_workers
  86. self.timeout = timeout
  87. self.timeout_event = timeout_event
  88. self.divide = divide
  89. if isinstance(dataset, StreamDataset):
  90. self.sampler = sampler if sampler else StreamSampler(batch_size=1)
  91. assert isinstance(
  92. self.sampler, StreamSampler
  93. ), "types of dataset and sampler do not match"
  94. else:
  95. assert isinstance(
  96. dataset, Dataset
  97. ), "Can not recognize this kind of dataset: %s" % type(dataset)
  98. self.sampler = (
  99. sampler
  100. if sampler
  101. else SequentialSampler(dataset, batch_size=1, drop_last=False)
  102. )
  103. assert isinstance(
  104. self.sampler, MapSampler
  105. ), "types of dataset and sampler do not match"
  106. if divide:
  107. if self.sampler.batch_size <= self.num_workers:
  108. raise ValueError(
  109. "batch size must not smaller than num_workers in divide mode."
  110. )
  111. elif self.sampler.batch_size % self.num_workers:
  112. logger.warning(
  113. "batch size is not divisible by num_workers, may lose performance in divide mode."
  114. )
  115. if transform is None:
  116. self.transform = PseudoTransform()
  117. else:
  118. self.transform = transform
  119. if collator is None:
  120. self.collator = Collator()
  121. else:
  122. self.collator = collator
  123. self.__initialized = True
  124. def __iter__(self):
  125. if platform.system() == "Windows" and self.num_workers > 0:
  126. print(
  127. "pyarrow.plasma does not support ParallelDataLoader on windows, changing num_workers to be zero"
  128. )
  129. self.num_workers = 0
  130. if isinstance(self.dataset, StreamDataset):
  131. if not self.num_workers:
  132. return _SerialStreamDataLoaderIter(self)
  133. else:
  134. return _ParallelStreamDataLoaderIter(self)
  135. else:
  136. assert isinstance(
  137. self.dataset, Dataset
  138. ), "Can not recognize this kind of dataset: %s" % type(self.dataset)
  139. if not self.num_workers:
  140. return _SerialMapDataLoaderIter(self)
  141. else:
  142. return _ParallelMapDataLoaderIter(self)
  143. def __len__(self):
  144. return len(self.sampler)
  145. class _BaseMapDataLoaderIter:
  146. def __init__(self, loader):
  147. self.dataset = loader.dataset
  148. self.sampler = loader.sampler
  149. self.seed = _random_seed_generator().__next__()
  150. self.transform = loader.transform
  151. self.collator = loader.collator
  152. self.num_workers = loader.num_workers
  153. self.timeout = loader.timeout
  154. self.timeout_event = loader.timeout_event
  155. self.divide = loader.divide
  156. self.num_processed = 0
  157. def _get_next_batch(self):
  158. raise NotImplementedError
  159. def __len__(self):
  160. return len(self.sampler)
  161. def __iter__(self):
  162. return self
  163. def __next__(self):
  164. if self.num_processed >= len(self):
  165. raise StopIteration
  166. minibatch = self._get_next_batch()
  167. self.num_processed += 1
  168. return minibatch
  169. class _SerialMapDataLoaderIter(_BaseMapDataLoaderIter):
  170. def __init__(self, loader):
  171. super(_SerialMapDataLoaderIter, self).__init__(loader)
  172. self.indices_iter = iter(self.sampler)
  173. def _get_next_batch(self):
  174. indices = next(self.indices_iter)
  175. items = [self.dataset[idx] for idx in indices]
  176. trans_items = self.transform.apply_batch(items)
  177. return self.collator.apply(trans_items)
  178. class _ParallelMapDataLoaderIter(_BaseMapDataLoaderIter):
  179. __initialized = False
  180. def __init__(self, loader):
  181. super(_ParallelMapDataLoaderIter, self).__init__(loader)
  182. self.task_queues = [
  183. multiprocessing.Queue(maxsize=2) for _ in range(self.num_workers)
  184. ]
  185. self.feed_batch_idx = multiprocessing.Value("i", 0)
  186. self.target_batch_idx = multiprocessing.Value("i", 0)
  187. self.shutdown_flag = multiprocessing.Value("i", 0)
  188. self.trans_data_queues = [
  189. multiprocessing.Queue(maxsize=1) for _ in range(self.num_workers)
  190. ]
  191. # use shared-memory queue implemented by pyarrow plasma store.
  192. from .tools._queue import PlasmaShmQueue
  193. self.batch_queue = PlasmaShmQueue(maxsize=2)
  194. self.task_feeding_worker = multiprocessing.Process(
  195. target=_task_feeding_loop,
  196. args=(
  197. iter(self.sampler),
  198. self.task_queues,
  199. self.num_workers,
  200. self.divide,
  201. self.shutdown_flag,
  202. self.feed_batch_idx,
  203. ),
  204. daemon=True,
  205. )
  206. gc.collect()
  207. self.task_feeding_worker.start()
  208. self.workers = []
  209. for worker_id in range(self.num_workers):
  210. worker = multiprocessing.Process(
  211. target=_worker_loop,
  212. args=(
  213. self.dataset,
  214. self.task_queues[worker_id],
  215. self.trans_data_queues[worker_id],
  216. self.transform,
  217. self.seed + worker_id + 1,
  218. self.shutdown_flag,
  219. ),
  220. daemon=True,
  221. )
  222. gc.collect()
  223. worker.start()
  224. self.workers.append(worker)
  225. if self.divide:
  226. self.data_collecting_worker = multiprocessing.Process(
  227. target=_data_gathering_loop,
  228. args=(
  229. self.trans_data_queues,
  230. self.batch_queue,
  231. self.collator,
  232. len(self),
  233. self.num_workers,
  234. self.shutdown_flag,
  235. self.target_batch_idx,
  236. ),
  237. daemon=True,
  238. )
  239. else:
  240. self.data_collecting_worker = multiprocessing.Process(
  241. target=_data_selecting_loop,
  242. args=(
  243. self.trans_data_queues,
  244. self.batch_queue,
  245. self.collator,
  246. len(self),
  247. self.num_workers,
  248. self.shutdown_flag,
  249. self.target_batch_idx,
  250. ),
  251. daemon=True,
  252. )
  253. gc.collect()
  254. self.data_collecting_worker.start()
  255. self.__initialized = True
  256. def _check_workers(self):
  257. # Check the status of each worker.
  258. if not self.data_collecting_worker.is_alive():
  259. exitcode = self.task_feeding_worker.exitcode
  260. if exitcode != 0:
  261. raise RuntimeError("data collecting worker died. {}".format(exitcode))
  262. if not self.task_feeding_worker.is_alive():
  263. exitcode = self.task_feeding_worker.exitcode
  264. if exitcode != 0:
  265. raise RuntimeError("task feeding worker died. {}".format(exitcode))
  266. for worker_id, worker in enumerate(self.workers):
  267. if not worker.is_alive():
  268. exitcode = worker.exitcode
  269. if exitcode != 0:
  270. raise RuntimeError("worker:{} died. {}".format(worker_id, exitcode))
  271. logger.debug("all workers are alive.")
  272. def _get_next_batch(self):
  273. start_time = time.time()
  274. while True:
  275. self._check_workers()
  276. try:
  277. return self.batch_queue.get(timeout=1)
  278. except queue.Empty:
  279. logger.debug("batch queue empty!")
  280. waited_time = time.time() - start_time
  281. if self.timeout > 0:
  282. if waited_time > self.timeout:
  283. raise RuntimeError("get_next_batch timeout!")
  284. def _shutdown(self):
  285. with self.shutdown_flag.get_lock():
  286. self.shutdown_flag.value = 1
  287. if self.task_feeding_worker.is_alive():
  288. self.task_feeding_worker.terminate()
  289. self.task_feeding_worker.join()
  290. if self.data_collecting_worker.is_alive():
  291. self.data_collecting_worker.terminate()
  292. self.data_collecting_worker.join()
  293. for worker in self.workers:
  294. if worker.is_alive():
  295. worker.terminate()
  296. worker.join()
  297. for q in self.trans_data_queues:
  298. q.cancel_join_thread()
  299. q.close()
  300. for q in self.task_queues:
  301. q.cancel_join_thread()
  302. q.close()
  303. self.batch_queue.cancel_join_thread()
  304. self.batch_queue.close()
  305. def __del__(self):
  306. if self.__initialized:
  307. self._shutdown()
  308. class _BaseStreamDataLoaderIter:
  309. def __init__(self, loader):
  310. self.dataset = loader.dataset
  311. self.sampler = loader.sampler
  312. self.transform = loader.transform
  313. self.collator = loader.collator
  314. self.num_workers = loader.num_workers
  315. self.timeout = loader.timeout
  316. self.timeout_event = loader.timeout_event
  317. def _get_next_batch(self):
  318. raise NotImplementedError
  319. def _process_raw_data(self, raw_data):
  320. assert len(raw_data) == 2 and isinstance(
  321. raw_data[0], bool
  322. ), "StreamDataset should provide a binary tuple, the first item indicates whether the data was batched."
  323. if not raw_data[0]:
  324. data = list((x,) for x in raw_data[1])
  325. else:
  326. data = raw_data[1]
  327. ret = []
  328. for idx in range(len(data[0])):
  329. ret.append(tuple(e[idx] for e in data))
  330. return ret
  331. def __iter__(self):
  332. return self
  333. def __next__(self):
  334. return self._get_next_batch()
  335. class _SerialStreamDataLoaderIter(_BaseStreamDataLoaderIter):
  336. def __init__(self, loader):
  337. super().__init__(loader)
  338. self.dataset_iter = iter(self.dataset)
  339. self.idx = 0
  340. self.unused = []
  341. def _try_get_raw_data(self, start_time):
  342. raw_data = None
  343. while not raw_data:
  344. try:
  345. if self.timeout > 0:
  346. timer = threading.Timer(self.timeout, thread.interrupt_main)
  347. timer.start()
  348. raw_data = next(self.dataset_iter)
  349. if self.timeout > 0:
  350. timer.cancel()
  351. except KeyboardInterrupt:
  352. raw_data = self.timeout_event()
  353. except:
  354. if self.timeout > 0:
  355. timer.cancel()
  356. waited_time = time.time() - start_time
  357. if waited_time > self.timeout:
  358. raw_data = self.timeout_event()
  359. return raw_data
  360. def _get_next_batch(self):
  361. ret = []
  362. start_time = time.time()
  363. while len(ret) < self.sampler.batch_size:
  364. if len(self.unused) != 0:
  365. batch_data = self.unused
  366. else:
  367. raw_data = self._try_get_raw_data(start_time)
  368. batch_data = self._process_raw_data(raw_data)
  369. while len(batch_data) != 0 and len(ret) < self.sampler.batch_size:
  370. data = batch_data.pop()
  371. ret.append(self.transform.apply(data))
  372. self.unused = batch_data
  373. return self.collator.apply(ret)
  374. class _ParallelStreamDataLoaderIter(_BaseStreamDataLoaderIter):
  375. __initialized = False
  376. def __init__(self, loader):
  377. super().__init__(loader)
  378. self.shutdown_flag = multiprocessing.Value("i", 0)
  379. self.raw_data_queues = [
  380. multiprocessing.Queue(maxsize=1) for _ in range(self.num_workers)
  381. ]
  382. self.trans_data_queues = [
  383. multiprocessing.Queue(maxsize=1) for _ in range(self.num_workers)
  384. ]
  385. # shared-memory queue implemented by pyarrow plasma store
  386. from .tools._queue import PlasmaShmQueue
  387. self.batch_queue = PlasmaShmQueue(maxsize=2)
  388. self.recieve_worker = multiprocessing.Process(
  389. target=self._worker_to_raw_data_queues, daemon=True
  390. )
  391. gc.collect()
  392. self.recieve_worker.start()
  393. self.transform_workers = []
  394. for worker_id in range(self.num_workers):
  395. worker = multiprocessing.Process(
  396. target=self._worker_to_trans_data_queues, args=(worker_id,), daemon=True
  397. )
  398. gc.collect()
  399. worker.start()
  400. self.transform_workers.append(worker)
  401. self.collect_worker = multiprocessing.Process(
  402. target=self._worker_to_batch_queue, daemon=True
  403. )
  404. gc.collect()
  405. self.collect_worker.start()
  406. self.__initialized = True
  407. def _put_raw_data_queues(self, raw_data, qidx):
  408. batch_data = self._process_raw_data(raw_data)
  409. for data in batch_data:
  410. while True:
  411. qidx = qidx % self.num_workers
  412. try:
  413. self.raw_data_queues[qidx].put(data)
  414. break
  415. except queue.Full:
  416. if self.shutdown_flag.value == 1:
  417. break
  418. logger.debug("raw data queue %d is full" % qidx)
  419. finally:
  420. qidx += 1
  421. return qidx
  422. def _worker_to_raw_data_queues(self):
  423. dataset_iter = iter(self.dataset)
  424. qidx = 0
  425. while True:
  426. if self.shutdown_flag.value == 1:
  427. break
  428. raw_data = next(dataset_iter)
  429. qidx = self._put_raw_data_queues(raw_data, qidx)
  430. def _worker_to_trans_data_queues(self, worker_id):
  431. while True:
  432. if self.shutdown_flag.value == 1:
  433. break
  434. try:
  435. data = self.raw_data_queues[worker_id].get(timeout=GLOBAL_TIMEOUT)
  436. except queue.Empty:
  437. continue
  438. trans_data = self.transform.apply(data)
  439. while True:
  440. try:
  441. self.trans_data_queues[worker_id].put(trans_data)
  442. break
  443. except queue.Full:
  444. if self.shutdown_flag.value == 1:
  445. break
  446. logger.debug("batch queue if full")
  447. def _worker_to_batch_queue(self):
  448. cnt = -1
  449. trans_items = []
  450. while True:
  451. if self.shutdown_flag.value == 1:
  452. break
  453. cnt += 1
  454. queue_id = cnt % self.num_workers
  455. try:
  456. trans_item = self.trans_data_queues[queue_id].get(
  457. timeout=GLOBAL_TIMEOUT
  458. )
  459. except queue.Empty:
  460. continue
  461. trans_items.append(trans_item)
  462. if len(trans_items) == self.sampler.batch_size:
  463. batch_data = self.collator.apply(trans_items)
  464. while True:
  465. try:
  466. self.batch_queue.put(batch_data, timeout=1)
  467. break
  468. except queue.Full:
  469. if self.shutdown_flag.value == 1:
  470. break
  471. logger.debug("batch queue is full")
  472. trans_items = []
  473. def _check_workers(self):
  474. if not self.collect_worker.is_alive():
  475. exitcode = self.collect_worker.exitcode
  476. if exitcode != 0:
  477. raise RuntimeError("collator worker died. {}".format(exitcode))
  478. for worker_id, worker in enumerate(self.transform_workers):
  479. if not worker.is_alive():
  480. exitcode = worker.exitcode
  481. if exitcode != 0:
  482. raise RuntimeError(
  483. "worker: {} died. {}".format(worker_id, exitcode)
  484. )
  485. def _get_next_batch(self):
  486. start_time = time.time()
  487. while True:
  488. self._check_workers()
  489. try:
  490. return self.batch_queue.get(timeout=1)
  491. except queue.Empty:
  492. logger.debug("batch queue empty!")
  493. waited_time = time.time() - start_time
  494. if self.timeout > 0 and waited_time > self.timeout:
  495. self._put_raw_data_queues(self.timeout_event(), 0)
  496. def _shutdown(self):
  497. with self.shutdown_flag.get_lock():
  498. self.shutdown_flag.value = 1
  499. if self.recieve_worker.is_alive():
  500. self.recieve_worker.terminate()
  501. self.recieve_worker.join()
  502. if self.collect_worker.is_alive():
  503. self.collect_worker.terminate()
  504. self.collect_worker.join()
  505. for worker in self.transform_workers:
  506. if worker.is_alive():
  507. worker.terminate()
  508. worker.join()
  509. for q in self.raw_data_queues:
  510. q.cancel_join_thread()
  511. q.close()
  512. for q in self.trans_data_queues:
  513. q.cancel_join_thread()
  514. q.close()
  515. self.batch_queue.cancel_join_thread()
  516. self.batch_queue.close()
  517. def __del__(self):
  518. if self.__initialized:
  519. self._shutdown()
  520. def _task_feeding_loop(
  521. indices_iter, task_queues, num_workers, divide, shutdown_flag, feed_batch_idx
  522. ):
  523. # Feed the indices into the task queues
  524. while True:
  525. if shutdown_flag.value == 1:
  526. break
  527. batch_idx = feed_batch_idx.value
  528. try:
  529. indices = next(indices_iter)
  530. except StopIteration:
  531. break
  532. if divide:
  533. # make sure all task_queues is ready for put
  534. while any([q.full() for q in task_queues]):
  535. if shutdown_flag.value == 1:
  536. return
  537. # divide into small pieces, feed to different workers.
  538. sub_num = math.ceil(len(indices) / num_workers)
  539. for worker_id in range(num_workers):
  540. sub_indices = indices[worker_id * sub_num : (worker_id + 1) * sub_num]
  541. task_queues[worker_id].put((batch_idx, sub_indices))
  542. else:
  543. # distribute tasks to different workers uniformly.
  544. target_id = batch_idx % num_workers
  545. while task_queues[target_id].full():
  546. if shutdown_flag.value == 1:
  547. return
  548. task_queues[target_id].put((batch_idx, indices))
  549. with feed_batch_idx.get_lock():
  550. feed_batch_idx.value += 1
  551. def _worker_loop(dataset, task_queue, trans_data_queue, transform, seed, shutdown_flag):
  552. # Get dataset items and do the transform
  553. random.seed(seed)
  554. np.random.seed(seed)
  555. while True:
  556. if shutdown_flag.value == 1:
  557. break
  558. try:
  559. batch_idx, indices = task_queue.get(timeout=GLOBAL_TIMEOUT)
  560. except queue.Empty:
  561. continue
  562. if len(indices) > 0:
  563. items = [dataset[idx] for idx in indices]
  564. trans_items = transform.apply_batch(items)
  565. else:
  566. # in case of incomplete last batch
  567. trans_items = ()
  568. while True:
  569. try:
  570. trans_data_queue.put((batch_idx, trans_items), timeout=1)
  571. break
  572. except queue.Full:
  573. if shutdown_flag.value == 1:
  574. break
  575. logger.debug("batch part queue is full!")
  576. def _data_gathering_loop(
  577. trans_data_queues,
  578. batch_queue,
  579. collator,
  580. length,
  581. num_workers,
  582. shutdown_flag,
  583. target_idx,
  584. ):
  585. # Gathering the small pieces of batch data into full batch data
  586. while True:
  587. if shutdown_flag.value == 1:
  588. break
  589. target_batch_idx = target_idx.value
  590. if target_batch_idx >= length:
  591. break
  592. full_trans_items = []
  593. for worker_id in range(num_workers):
  594. while True:
  595. try:
  596. batch_idx, trans_items = trans_data_queues[worker_id].get(
  597. timeout=GLOBAL_TIMEOUT
  598. )
  599. break
  600. except queue.Empty:
  601. if shutdown_flag.value == 1:
  602. break
  603. logger.debug(
  604. "worker:{} data queue get timeout! target batch idx:{}".format(
  605. worker_id, target_batch_idx
  606. )
  607. )
  608. if batch_idx != target_batch_idx:
  609. raise RuntimeError(
  610. "Unexperted batch_idx in data gathering loop. worker_id:{}.".format(
  611. worker_id
  612. )
  613. )
  614. else:
  615. full_trans_items.extend(trans_items)
  616. # Merge different parts into a batch.
  617. full_batch = collator.apply(full_trans_items)
  618. while True:
  619. try:
  620. batch_queue.put(full_batch, timeout=1)
  621. break
  622. except queue.Full:
  623. if shutdown_flag.value == 1:
  624. break
  625. logger.debug("batch queue is full!")
  626. with target_idx.get_lock():
  627. target_idx.value += 1
  628. batch_queue.disconnect_client()
  629. def _data_selecting_loop(
  630. trans_data_queues,
  631. batch_queue,
  632. collator,
  633. length,
  634. num_workers,
  635. shutdown_flag,
  636. target_idx,
  637. ):
  638. # Make sure that batch is generated exactly with the same order as generated indices
  639. while True:
  640. if shutdown_flag.value == 1:
  641. break
  642. target_batch_idx = target_idx.value
  643. if target_batch_idx >= length:
  644. break
  645. target_worker_id = target_batch_idx % num_workers
  646. while True:
  647. try:
  648. batch_idx, trans_items = trans_data_queues[target_worker_id].get(
  649. timeout=GLOBAL_TIMEOUT
  650. )
  651. batch_data = collator.apply(trans_items)
  652. break
  653. except queue.Empty:
  654. if shutdown_flag.value == 1:
  655. break
  656. logger.debug(
  657. "worker:{} data queue get timeout! target batch idx:{}".format(
  658. target_worker_id, target_batch_idx
  659. )
  660. )
  661. if batch_idx != target_batch_idx:
  662. raise RuntimeError(
  663. "batch_idx {} mismatch the target_batch_idx {}".format(
  664. batch_idx, target_batch_idx
  665. )
  666. )
  667. while True:
  668. try:
  669. batch_queue.put(batch_data, timeout=1)
  670. break
  671. except queue.Full:
  672. if shutdown_flag.value == 1:
  673. break
  674. logger.debug("batch queue is full!")
  675. with target_idx.get_lock():
  676. target_idx.value += 1
  677. batch_queue.disconnect_client()

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台