You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

checker.h 22 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600
  1. /**
  2. * \file dnn/test/common/checker.h
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #pragma once
  13. #include "megdnn/basic_types.h"
  14. #include "megdnn/tensor_iter.h"
  15. #include "test/common/opr_algo_proxy.h"
  16. #include "test/common/opr_proxy.h"
  17. #include "test/common/rng.h"
  18. #include <gtest/gtest.h>
  19. #include <memory>
  20. #include <regex>
  21. #include <unordered_map>
  22. // clang-format off
  23. #if defined(__has_feature)
  24. #if __has_feature(address_sanitizer)
  25. #define MEGDNN_TEST_ASAN 1
  26. #else
  27. #define MEGDNN_TEST_ASAN 0
  28. #endif
  29. #elif defined(__SANITIZE_ADDRESS__)
  30. #define MEGDNN_TEST_ASAN 1
  31. #else
  32. #define MEGDNN_TEST_ASAN 0
  33. #endif
  34. // clang-format on
  35. namespace megdnn {
  36. namespace test {
  37. class CheckerHelper {
  38. // TensorLayoutArray and TensorValueArray should be protected in theory;
  39. // but g++-4.9 bugs handle access privilege wrongfully, so we change it
  40. // to public.
  41. public:
  42. using TensorValueArray = TensorNDArray;
  43. using TensorsConstriant = std::function<void(TensorValueArray& tensors)>;
  44. using ExtraOprImpl = std::function<void(const TensorNDArray&)>;
  45. using OutputCanonizer = std::function<void(const TensorValueArray&)>;
  46. static std::shared_ptr<TensorValueArray> alloc_tensors(
  47. Handle* handle, const TensorLayoutArray& layouts, size_t offset);
  48. Handle* handle() const { return m_handle_cur; }
  49. protected:
  50. //! whether to use physically contiguous (i.e. default layout) for naive
  51. //! impl
  52. bool m_enable_contig_naive = false;
  53. bool m_prev_succ = true;
  54. const char* m_input_tensors_fpath = nullptr;
  55. thin_function<void()> m_expect_exec_fail;
  56. std::unique_ptr<Handle> m_handle_naive;
  57. Handle* m_handle_cur;
  58. std::unique_ptr<RNG> m_default_rng;
  59. std::unordered_map<size_t, RNG*> m_rng;
  60. std::unordered_map<size_t, DType> m_dtype;
  61. std::unordered_map<size_t, TensorFormat> m_fmt;
  62. float_t m_epsilon = 1e-3, m_max_avg_error = 1e-3,
  63. m_max_avg_biased_error = 1e-3;
  64. float_t m_perf_check_threshold = -1;
  65. bool m_perf_check = false;
  66. ExtraOprImpl m_extra_opr_impl;
  67. OutputCanonizer m_output_canonizer;
  68. TensorsConstriant m_tensor_constraint;
  69. bool m_no_naive_and_check = false;
  70. bool m_stable_check = false;
  71. /**
  72. * the offset from the start of malloc memory
  73. *
  74. * \note alloc \p m_offset more memory when alloc memory for a tensor,
  75. * the start of tensor just begin at \p m_offset.
  76. * \warning current only used for opencl
  77. */
  78. size_t m_offset = 0;
  79. CheckerHelper(Handle* handle, bool check_dispatch = true);
  80. ~CheckerHelper() noexcept;
  81. using OprExec = std::function<void(const TensorValueArray&)>;
  82. void do_exec_with_testcases(const TensorValueArray& testcase_in,
  83. const TensorValueArray& testcase_out,
  84. const OprExec& exec_opr);
  85. void do_exec(const TensorLayoutArray& user_layouts,
  86. const TensorLayoutArray& deduced_layouts,
  87. const OprExec& exec_naive, const OprExec& exec_opr);
  88. void enable_contig_naive() { m_enable_contig_naive = true; }
  89. void copy_tensors_to_device(const TensorValueArray& dest,
  90. const TensorValueArray& src);
  91. void copy_tensors_from_device(const TensorValueArray& dest,
  92. const TensorValueArray& src);
  93. private:
  94. std::shared_ptr<TensorValueArray> m_tensors_naive;
  95. void init_naive_values();
  96. void check_tensors(const TensorValueArray& expected,
  97. const TensorValueArray& computed);
  98. };
  99. template <typename Opr, typename Proxy = OprProxy<Opr>>
  100. class Checker : public CheckerHelper {
  101. public:
  102. using Param = typename Opr::Param;
  103. using BeforeExecCallback =
  104. std::function<void(Opr*, const TensorValueArray&)>;
  105. Checker(Handle* handle, bool check_dispatch = true)
  106. : CheckerHelper(handle, check_dispatch), m_param(Param()) {}
  107. TensorLayoutArray make_layouts(const TensorShapeArray& shapes) {
  108. TensorLayoutArray layouts(shapes.size());
  109. for (size_t i = 0; i < shapes.size(); ++i) {
  110. DType dt = (m_dtype.find(i) != m_dtype.end() ? m_dtype[i]
  111. : dtype::Float32());
  112. if (m_fmt.find(i) == m_fmt.end()) {
  113. layouts[i] = TensorLayout(shapes[i], dt);
  114. } else
  115. layouts[i] = TensorLayout(shapes[i], dt, m_fmt[i]);
  116. }
  117. return layouts;
  118. }
  119. /*!
  120. * \brief execute opr on current param/dtype/rng config
  121. * \param shapes input/output shapes, which would be passed as
  122. * arguments to Opr::deduce_layout
  123. *
  124. * Checker would construct TensorLayout vectors from shapes and dtypes,
  125. * and call exec(TensorLayoutArray &).
  126. */
  127. Checker& exec(const TensorShapeArray& shapes) {
  128. exec(make_layouts(shapes));
  129. return *this;
  130. }
  131. void exec(TensorLayoutArray layouts);
  132. //! explicitly require argument to be TensorShape
  133. Checker& execs(const TensorShapeArray& shapes) { return exec(shapes); }
  134. //! explicitly require argument to be TensorLayout
  135. Checker& execl(const TensorLayoutArray& layouts) {
  136. exec(layouts);
  137. return *this;
  138. }
  139. Checker& exect(const TensorValueArray& testcase_in,
  140. const TensorValueArray& testcase_out);
  141. Checker& set_param(Param param) {
  142. m_param = param;
  143. opr()->param() = param;
  144. return *this;
  145. }
  146. Checker& set_dtype(size_t idx, DType dtype) {
  147. m_dtype[idx] = dtype;
  148. return *this;
  149. }
  150. Checker& set_fmt(size_t idx, TensorFormat fmt) {
  151. m_fmt[idx] = fmt;
  152. return *this;
  153. }
  154. Checker& set_rng(size_t idx, RNG* rng) {
  155. m_rng[idx] = rng;
  156. return *this;
  157. }
  158. //! max error of a single element
  159. Checker& set_epsilon(dt_float32 epsilon) {
  160. m_epsilon = epsilon;
  161. m_max_avg_error = epsilon;
  162. m_max_avg_biased_error = epsilon;
  163. return *this;
  164. }
  165. //! max average error; defaults to epsilon
  166. Checker& set_max_avg_error(dt_float32 error) {
  167. m_max_avg_error = error;
  168. return *this;
  169. }
  170. //! max average biased error; defaults to epsilon
  171. Checker& set_max_avg_biased_error(dt_float32 error) {
  172. m_max_avg_biased_error = error;
  173. return *this;
  174. }
  175. Checker& set_offset(size_t offset) {
  176. m_offset = offset;
  177. return *this;
  178. }
  179. Checker& set_proxy(const Proxy& proxy) {
  180. m_naive_proxy = proxy;
  181. m_cur_proxy = proxy;
  182. return *this;
  183. }
  184. //! set_perf_check and set_perf_check_threshold control the
  185. //! performance checking behavior.
  186. //!
  187. //! If perf_check is on (default to off), the running time of the
  188. //! current operator and the naive operator would be measured and
  189. //! checked when calling exec.
  190. //! The accelerating ratio should be larger than perf_check_threshold,
  191. //! otherwise errors would be reported.
  192. //! perf_check_threshold must be set in advance since the default value
  193. //! (which is negative) is invalid.
  194. Checker& set_perf_check(bool perf_check) {
  195. m_perf_check = perf_check;
  196. return *this;
  197. }
  198. Checker& set_perf_check_threshold(float perf_check_threshold) {
  199. m_perf_check_threshold = perf_check_threshold;
  200. return *this;
  201. }
  202. //! stable check will run many iter and compare result with first iter
  203. Checker& set_stable_check(bool stable_check) {
  204. m_stable_check = stable_check;
  205. return *this;
  206. }
  207. Checker& set_no_naive_check(bool no_naive_and_check) {
  208. m_no_naive_and_check = no_naive_and_check;
  209. return *this;
  210. }
  211. //! load input tensors from file for next run
  212. Checker& load_input_tensors(const char* fpath) {
  213. m_input_tensors_fpath = fpath;
  214. return *this;
  215. }
  216. //! add another checker to ensure naive implementation is correct
  217. Checker& set_extra_opr_impl(const ExtraOprImpl& chk) {
  218. m_extra_opr_impl = chk;
  219. return *this;
  220. }
  221. //! set a callback to be invoked before executing the operator
  222. Checker& set_before_exec_callback(const BeforeExecCallback& cb) {
  223. m_before_exec_callback = cb;
  224. return *this;
  225. }
  226. Checker& reset_before_exec_callback() {
  227. m_before_exec_callback = nullptr;
  228. return *this;
  229. }
  230. //! set a tensors constraints function, for the purpose of manipulating
  231. //! tensors when testing.
  232. Checker& set_tensors_constraint(
  233. const TensorsConstriant& tensor_constraint) {
  234. m_tensor_constraint = tensor_constraint;
  235. return *this;
  236. }
  237. /*!
  238. * \brief set that exec() on opr should fail, so naive is not called and
  239. * exec() returns directly after opr is called.
  240. *
  241. * This is only valid for next exec() call. It is usually used for
  242. * testing megcore::AsyncErrorInfo.
  243. *
  244. * \param cb callback to be invoked after opr exec (so error would not
  245. * be passed to destructor)
  246. */
  247. Checker& set_expect_exec_fail(const thin_function<void()>& cb) {
  248. m_expect_exec_fail = cb;
  249. return *this;
  250. }
  251. /*!
  252. * \brief set a function to canonize the outputs
  253. *
  254. * For some oprs maybe multiple outputs can be accepted; we can use a
  255. * function to transform them into a canonized form before comparing.
  256. *
  257. * The arguments are tensors on CPU and should be modified in-place.
  258. */
  259. Checker& set_output_canonizer(OutputCanonizer canonizer) {
  260. m_output_canonizer = std::move(canonizer);
  261. return *this;
  262. }
  263. //! get the opr impl so setting other than param() can be modified
  264. Opr* opr() {
  265. if (!m_opr_cur) {
  266. m_opr_cur = m_handle_cur->create_operator<Opr>();
  267. }
  268. return m_opr_cur.get();
  269. }
  270. //! whether previous exec succeeds
  271. bool prev_succ() const { return m_prev_succ; }
  272. private:
  273. BeforeExecCallback m_before_exec_callback;
  274. Param m_param;
  275. Proxy m_naive_proxy, m_cur_proxy;
  276. std::unique_ptr<Opr> m_opr_cur;
  277. };
  278. ::testing::AssertionResult __assert_tensor_eq(
  279. const char* expr0, const char* expr1, const char* expr_maxerr,
  280. const char* expr_maxerr_avg, const char* expr_maxerr_avg_biased,
  281. const TensorND& v0, const TensorND& v1, float maxerr, float maxerr_avg,
  282. float maxerr_avg_biased);
  283. #define MEGDNN_ASSERT_TENSOR_EQ_EPS_AVG(v0, v1, maxerr, maxerr_avg, \
  284. maxerr_avg_biased) \
  285. ASSERT_PRED_FORMAT5(::megdnn::test::__assert_tensor_eq, v0, v1, maxerr, \
  286. maxerr_avg, maxerr_avg_biased)
  287. #define MEGDNN_ASSERT_TENSOR_EQ_EPS(v0, v1, maxerr) \
  288. MEGDNN_ASSERT_TENSOR_EQ_EPS_AVG(v0, v1, maxerr, maxerr, maxerr)
  289. #define MEGDNN_ASSERT_TENSOR_EQ(v0, v1) \
  290. MEGDNN_ASSERT_TENSOR_EQ_EPS(v0, v1, 1e-3)
  291. template <typename Opr, typename Proxy>
  292. void Checker<Opr, Proxy>::exec(TensorLayoutArray layouts) {
  293. auto opr_naive = m_handle_naive->create_operator<Opr>();
  294. auto opr_relayout = m_handle_naive->create_operator<RelayoutForward>();
  295. auto opr_cur = this->opr();
  296. opr_naive->param() = m_param;
  297. opr_cur->param() = m_param;
  298. m_naive_proxy.deduce_layout(opr_naive.get(), layouts);
  299. auto exec_naive = [this, &opr_naive, &layouts,
  300. &opr_relayout](const TensorValueArray& values) {
  301. TensorValueArray contig_values = values;
  302. TensorValueArray real_values = values;
  303. std::shared_ptr<TensorValueArray> tensors_naive_contig_storage;
  304. if (m_enable_contig_naive) {
  305. TensorLayoutArray contig_layouts;
  306. for (auto&& layout : layouts) {
  307. contig_layouts.emplace_back(TensorLayout{
  308. static_cast<const TensorShape&>(layout), layout.dtype});
  309. }
  310. m_naive_proxy.deduce_layout(opr_naive.get(), contig_layouts);
  311. tensors_naive_contig_storage = alloc_tensors(
  312. m_handle_naive.get(), contig_layouts, m_offset);
  313. contig_values = *tensors_naive_contig_storage;
  314. //! relayout value to the contig_values
  315. for (size_t i = 0; i < contig_values.size(); ++i) {
  316. if (real_values[i].layout.ndim == 0)
  317. continue;
  318. real_values[i].layout.format = {};
  319. opr_relayout->exec(real_values[i], contig_values[i],
  320. m_handle_naive.get());
  321. }
  322. }
  323. m_naive_proxy.exec(opr_naive.get(), contig_values);
  324. if (m_enable_contig_naive) {
  325. //! relayout to the values
  326. for (size_t i = 0; i < contig_values.size(); ++i) {
  327. if (real_values[i].layout.ndim == 0)
  328. continue;
  329. opr_relayout->exec(contig_values[i], real_values[i],
  330. m_handle_naive.get());
  331. }
  332. }
  333. };
  334. auto exec_opr = [this, opr_cur](const TensorValueArray& values) {
  335. if (m_before_exec_callback) {
  336. m_before_exec_callback(opr_cur, values);
  337. }
  338. m_cur_proxy.exec(opr_cur, values);
  339. };
  340. auto user_layouts = layouts;
  341. do_exec(user_layouts, layouts, exec_naive, exec_opr);
  342. }
  343. template <typename Opr, typename Proxy>
  344. Checker<Opr, Proxy>& Checker<Opr, Proxy>::exect(
  345. const TensorValueArray& testcase_in,
  346. const TensorValueArray& testcase_out) {
  347. auto opr_cur = this->opr();
  348. opr_cur->param() = m_param;
  349. auto exec_opr = [this, opr_cur](const TensorValueArray& values) {
  350. if (m_before_exec_callback) {
  351. m_before_exec_callback(opr_cur, values);
  352. }
  353. m_cur_proxy.exec(opr_cur, values);
  354. };
  355. do_exec_with_testcases(testcase_in, testcase_out, exec_opr);
  356. return *this;
  357. }
  358. template <typename T, typename U>
  359. TensorND TensorValue(const TensorShape& shape, T dtype,
  360. std::initializer_list<U> values) {
  361. TensorND tensor;
  362. tensor.layout = {shape, dtype};
  363. tensor.raw_ptr =
  364. static_cast<dt_byte*>(malloc(tensor.layout.span().dist_byte()));
  365. megdnn_assert(values.size() == tensor.layout.total_nr_elems(), "%zu == %zu",
  366. values.size(), tensor.layout.total_nr_elems());
  367. auto ptr = tensor.ptr<typename DTypeTrait<T>::ctype>();
  368. for (const auto& v : values) {
  369. *ptr++ = typename DTypeTrait<T>::ctype(v);
  370. }
  371. return tensor;
  372. }
  373. template <typename T, typename U>
  374. TensorND TensorValueLowbit4(const TensorShape& shape, T dtype,
  375. std::vector<U> values) {
  376. TensorND tensor;
  377. tensor.layout = {shape, dtype};
  378. tensor.raw_ptr =
  379. static_cast<dt_byte*>(malloc(tensor.layout.span().dist_byte()));
  380. megdnn_assert(values.size() == tensor.layout.total_nr_elems());
  381. auto ptr = tensor.ptr<typename DTypeTrait<T>::ctype>();
  382. auto layout = tensor.layout;
  383. auto dim_in = shape[layout.ndim - 1];
  384. auto elems = tensor.layout.total_nr_elems();
  385. auto dim_out = elems / dim_in;
  386. auto stride_out = div_ceil(dim_in, 2_z);
  387. size_t in_offset = 0;
  388. for (size_t i = 0; i < dim_out; ++i) {
  389. for (size_t j = 0; j < dim_in; j += 2) {
  390. U a = values[in_offset + j];
  391. U b = 0;
  392. if (j + 1 < dim_in)
  393. b = values[in_offset + j + 1];
  394. megdnn_assert(a >= DTypeTrait<T>::min());
  395. megdnn_assert(a <= DTypeTrait<T>::max());
  396. megdnn_assert(b >= DTypeTrait<T>::min());
  397. megdnn_assert(b <= DTypeTrait<T>::max());
  398. ptr[j / 2] = (a & 0xF) | (b << 4);
  399. }
  400. in_offset += dim_in;
  401. ptr += stride_out;
  402. }
  403. return tensor;
  404. }
  405. class Testcase : public SmallVector<TensorND> {
  406. public:
  407. using SmallVector<TensorND>::SmallVector;
  408. ~Testcase() {
  409. // Suicide
  410. for (const auto& tensor : *this) {
  411. if (tensor.raw_ptr) {
  412. free(tensor.raw_ptr);
  413. }
  414. }
  415. }
  416. Testcase(const Testcase&) = delete;
  417. Testcase operator=(const Testcase&) = delete;
  418. };
  419. struct ExecutionPolicyAlgoName {
  420. std::string name;
  421. std::vector<ExecutionPolicyAlgoName> sub_policy_names;
  422. ExecutionPolicyAlgoName(const char* name) : name{name} {}
  423. ExecutionPolicyAlgoName(
  424. const char* name,
  425. const std::vector<ExecutionPolicyAlgoName>& sub_policy)
  426. : name{name}, sub_policy_names{sub_policy} {}
  427. };
  428. /*!
  429. * \brief a callable to check that given algorithm is used for heuristic
  430. * \param require_algo if its value is true, then requires
  431. * get_algorithm_heuristic() to return the expected algo; otherwise the
  432. * expected algo must exist in get_all_algorithms() and it would be set to
  433. * be used
  434. */
  435. template <class Opr, typename OprAlgoProxy = OprAlgoProxy<Opr>>
  436. class AlgoChecker {
  437. public:
  438. AlgoChecker(ExecutionPolicyAlgoName name, bool* require_algo = nullptr)
  439. : m_policy_name{name}, m_require_algo{require_algo} {}
  440. AlgoChecker(ExecutionPolicy policy, bool* require_algo = nullptr)
  441. : m_policy{policy}, m_require_algo{require_algo} {}
  442. static ExecutionPolicy construct_execution_policy_from_name(
  443. const ExecutionPolicyAlgoName& policy_name,
  444. const TensorLayoutArray& layouts, const std::string& param,
  445. Handle* handle) {
  446. ExecutionPolicy ret;
  447. megdnn_assert(layouts.size() == OprTrait<Opr>::arity);
  448. auto opr = handle->create_operator<Opr>();
  449. opr->param() =
  450. Algorithm::deserialize_read_pod<typename Opr::Param>(param);
  451. for (auto algo_info :
  452. AlgoProxy<Opr, OprTrait<Opr>::arity>::get_all_algorithms_info(
  453. opr.get(), layouts)) {
  454. if (std::regex_match(
  455. algo_info.desc.name,
  456. std::regex("(" + policy_name.name + ")(.*)"))) {
  457. ret.algo = algo_info.desc;
  458. } else {
  459. continue;
  460. }
  461. Algorithm* algo = opr->get_algorithm_from_desc(algo_info.desc);
  462. std::vector<Algorithm::SearchItem>&& sub_items =
  463. algo->get_subopr_list(layouts, opr.get());
  464. if (sub_items.size() != policy_name.sub_policy_names.size()) {
  465. printf("Invalid sub_policy_names in %s, expected %zu but got "
  466. "%zu\n",
  467. algo_info.desc.name.c_str(), sub_items.size(),
  468. policy_name.sub_policy_names.size());
  469. return {};
  470. }
  471. FOREACH_OPR_TYPE_DISPATCH(sub_items, {
  472. ExecutionPolicy policy =
  473. AlgoChecker<_Opr>::construct_execution_policy_from_name(
  474. policy_name.sub_policy_names[_item_idx],
  475. _item.layouts, _item.param, handle);
  476. ret.sub_policy.push_back(policy);
  477. });
  478. return ret;
  479. }
  480. return ret;
  481. }
  482. void operator()(Opr* opr, const CheckerHelper::TensorValueArray& arr) {
  483. TensorLayoutArray layouts;
  484. for (auto&& val : arr) {
  485. layouts.push_back(val.layout);
  486. }
  487. if (!m_policy_name.name.empty()) {
  488. std::string param_str;
  489. Algorithm::serialize_write_pod(opr->param(), param_str);
  490. m_policy = construct_execution_policy_from_name(
  491. m_policy_name, layouts, param_str, opr->handle());
  492. ASSERT_TRUE(m_policy.algo.valid())
  493. << "algorithm " << m_policy_name.name << " not found";
  494. }
  495. if (m_require_algo && *m_require_algo) {
  496. auto algo =
  497. OprAlgoProxy::get_algorithm_info_heuristic(opr, layouts);
  498. ASSERT_STREQ(opr->get_algorithm_from_desc(m_policy.algo)->name(),
  499. algo.desc.name.c_str());
  500. } else {
  501. opr->execution_policy() = m_policy;
  502. }
  503. }
  504. private:
  505. ExecutionPolicyAlgoName m_policy_name;
  506. ExecutionPolicy m_policy;
  507. bool* m_require_algo;
  508. };
  509. template <typename Opr>
  510. void construct_sub_execution_policy_heuristic(ExecutionPolicy& policy,
  511. const TensorLayoutArray& layouts,
  512. const std::string& param,
  513. Handle* handle) {
  514. megdnn_assert(layouts.size() == OprTrait<Opr>::arity);
  515. auto opr = handle->create_operator<Opr>();
  516. opr->param() = Algorithm::deserialize_read_pod<typename Opr::Param>(param);
  517. if (!policy.algo.valid()) {
  518. policy.algo = AlgoProxy<Opr, OprTrait<Opr>::arity>::
  519. get_algorithm_info_heuristic(opr.get(), layouts)
  520. .desc;
  521. }
  522. Algorithm* algo = opr->get_algorithm_from_desc(policy.algo);
  523. std::vector<Algorithm::SearchItem>&& sub_items =
  524. algo->get_subopr_list(layouts, opr.get());
  525. FOREACH_OPR_TYPE_DISPATCH(sub_items, {
  526. policy.sub_policy.push_back(ExecutionPolicy{});
  527. construct_sub_execution_policy_heuristic<_Opr>(
  528. policy.sub_policy.back(), _item.layouts, _item.param, handle);
  529. });
  530. }
  531. } // namespace test
  532. } // namespace megdnn
  533. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台