You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_network.cpp 39 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091
  1. /**
  2. * \file test/test_network.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "lite_build_config.h"
  12. #if LITE_BUILD_WITH_MGE
  13. #include "./test_common.h"
  14. #include "megbrain/tensor.h"
  15. #include <chrono>
  16. #include <memory>
  17. #include <random>
  18. #include <unordered_map>
  19. using namespace lite;
  20. namespace {
  21. class CheckAllocator : public lite::Allocator {
  22. public:
  23. //! allocate memory of size in the given device with the given align
  24. void* allocate(LiteDeviceType device, int, size_t size, size_t align) override {
  25. LITE_ASSERT(device == LiteDeviceType::LITE_CPU);
  26. m_nr_left++;
  27. m_nr_allocated++;
  28. #ifdef WIN32
  29. return _aligned_malloc(size, align);
  30. #elif defined(__ANDROID__) || defined(ANDROID)
  31. return memalign(align, size);
  32. #else
  33. void* ptr = nullptr;
  34. auto err = posix_memalign(&ptr, align, size);
  35. mgb_assert(!err, "failed to malloc %zubytes with align %zu", size, align);
  36. return ptr;
  37. #endif
  38. };
  39. //! free the memory pointed by ptr in the given device
  40. void free(LiteDeviceType device, int, void* ptr) override {
  41. m_nr_left--;
  42. LITE_ASSERT(device == LiteDeviceType::LITE_CPU);
  43. #ifdef WIN32
  44. _aligned_free(ptr);
  45. #else
  46. ::free(ptr);
  47. #endif
  48. };
  49. std::atomic_size_t m_nr_left{0};
  50. std::atomic_size_t m_nr_allocated{0};
  51. };
  52. } // namespace
  53. TEST(TestNetWork, Basic) {
  54. Config config;
  55. auto lite_tensor = get_input_data("./input_data.npy");
  56. std::string model_path = "./shufflenet.mge";
  57. auto result_lite = mgelite_lar(model_path, config, "data", lite_tensor);
  58. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  59. compare_lite_tensor<float>(result_lite, result_mgb);
  60. }
  61. TEST(TestNetWork, SetDeviceId) {
  62. Config config;
  63. auto lite_tensor = get_input_data("./input_data.npy");
  64. std::string model_path = "./shufflenet.mge";
  65. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  66. network->set_device_id(4);
  67. network->load_model(model_path);
  68. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  69. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  70. network->forward();
  71. network->wait();
  72. ASSERT_EQ(input_tensor->get_device_id(), 4);
  73. ASSERT_EQ(output_tensor->get_device_id(), 4);
  74. }
  75. TEST(TestNetWork, GetAllName) {
  76. Config config;
  77. auto lite_tensor = get_input_data("./input_data.npy");
  78. std::string model_path = "./shufflenet.mge";
  79. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  80. network->load_model(model_path);
  81. auto input_names = network->get_all_input_name();
  82. auto output_names = network->get_all_output_name();
  83. auto output_tensor = network->get_output_tensor(0);
  84. auto out_layout = output_tensor->get_layout();
  85. ASSERT_EQ(out_layout.ndim, 2);
  86. ASSERT_EQ(out_layout.shapes[0], 1);
  87. ASSERT_EQ(out_layout.shapes[1], 1000);
  88. ASSERT_EQ(input_names.size(), 1);
  89. ASSERT_EQ(output_names.size(), 1);
  90. ASSERT_TRUE(input_names[0] == "data");
  91. ASSERT_TRUE(output_names[0] == "TRUE_DIV(EXP[12065],reduce0[12067])[12077]");
  92. }
  93. TEST(TestNetWork, BasicInplaceAndSingleThreadAffinity) {
  94. Config config;
  95. auto lite_tensor = get_input_data("./input_data.npy");
  96. std::string model_path = "./shufflenet.mge";
  97. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  98. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  99. Runtime::set_cpu_inplace_mode(network);
  100. network->load_model(model_path);
  101. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  102. int affinity_set = false;
  103. Runtime::set_runtime_thread_affinity(network, [&affinity_set](int id) {
  104. ASSERT_EQ(id, 0);
  105. affinity_set = true;
  106. });
  107. auto src_ptr = lite_tensor->get_memory_ptr();
  108. auto src_layout = lite_tensor->get_layout();
  109. input_tensor->reset(src_ptr, src_layout);
  110. //! inplace mode not support async mode
  111. ASSERT_THROW(network->set_async_callback([]() {}), std::exception);
  112. network->forward();
  113. network->wait();
  114. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  115. ASSERT_EQ(affinity_set, true);
  116. compare_lite_tensor<float>(output_tensor, result_mgb);
  117. }
  118. TEST(TestNetWork, NetworkShareWeights) {
  119. Config config;
  120. auto lite_tensor = get_input_data("./input_data.npy");
  121. std::string model_path = "./shufflenet.mge";
  122. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  123. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  124. network->load_model(model_path);
  125. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  126. std::shared_ptr<Network> network2 = std::make_shared<Network>(config);
  127. Runtime::set_cpu_inplace_mode(network2);
  128. Runtime::shared_weight_with_network(network2, network);
  129. std::shared_ptr<Tensor> input_tensor2 = network2->get_input_tensor(0);
  130. auto src_ptr = lite_tensor->get_memory_ptr();
  131. auto src_layout = lite_tensor->get_layout();
  132. input_tensor->reset(src_ptr, src_layout);
  133. input_tensor2->reset(src_ptr, src_layout);
  134. ASSERT_NE(input_tensor, input_tensor2);
  135. network->forward();
  136. network->wait();
  137. network2->forward();
  138. network2->wait();
  139. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  140. std::shared_ptr<Tensor> output_tensor2 = network2->get_output_tensor(0);
  141. ASSERT_NE(output_tensor->get_memory_ptr(), output_tensor2->get_memory_ptr());
  142. compare_lite_tensor<float>(output_tensor, result_mgb);
  143. compare_lite_tensor<float>(output_tensor2, result_mgb);
  144. }
  145. TEST(TestNetWork, SharedRuntimeMem) {
  146. Config config;
  147. auto lite_tensor = get_input_data("./input_data.npy");
  148. std::string model_path = "./shufflenet.mge";
  149. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  150. std::shared_ptr<Network> network_src = std::make_shared<Network>(config);
  151. std::shared_ptr<Network> network_dst = std::make_shared<Network>(config);
  152. Runtime::share_runtime_memory_with(network_dst, network_src);
  153. network_src->load_model(model_path);
  154. network_dst->load_model(model_path);
  155. }
  156. TEST(TestNetWork, UserAllocator) {
  157. auto allocator = std::make_shared<CheckAllocator>();
  158. {
  159. Config config;
  160. auto lite_tensor = get_input_data("./input_data.npy");
  161. std::string model_path = "./shufflenet.mge";
  162. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  163. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  164. Runtime::set_memory_allocator(network, allocator);
  165. network->load_model(model_path);
  166. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  167. auto src_ptr = lite_tensor->get_memory_ptr();
  168. auto src_layout = lite_tensor->get_layout();
  169. input_tensor->reset(src_ptr, src_layout);
  170. network->forward();
  171. network->wait();
  172. ASSERT_GE(allocator->m_nr_allocated, 1);
  173. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  174. compare_lite_tensor<float>(output_tensor, result_mgb);
  175. }
  176. ASSERT_EQ(allocator->m_nr_left, 0);
  177. }
  178. TEST(TestNetWork, BasicMultiThread) {
  179. Config config;
  180. auto lite_tensor = get_input_data("./input_data.npy");
  181. std::string model_path = "./shufflenet.mge";
  182. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  183. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  184. Runtime::set_cpu_threads_number(network, 2);
  185. network->load_model(model_path);
  186. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  187. auto src_ptr = lite_tensor->get_memory_ptr();
  188. auto src_layout = lite_tensor->get_layout();
  189. input_tensor->reset(src_ptr, src_layout);
  190. network->forward();
  191. network->wait();
  192. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  193. compare_lite_tensor<float>(output_tensor, result_mgb);
  194. }
  195. TEST(TestNetWork, ThreadAffinity) {
  196. size_t nr_threads = 4;
  197. Config config;
  198. auto lite_tensor = get_input_data("./input_data.npy");
  199. std::string model_path = "./shufflenet.mge";
  200. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  201. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  202. Runtime::set_cpu_threads_number(network, nr_threads);
  203. ASSERT_THROW(
  204. Runtime::set_runtime_thread_affinity(network, [](int) {}), std::exception);
  205. network->load_model(model_path);
  206. std::vector<std::thread::id> thread_ids(nr_threads);
  207. auto affinity = [&](int id) { thread_ids[id] = std::this_thread::get_id(); };
  208. Runtime::set_runtime_thread_affinity(network, affinity);
  209. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  210. auto src_ptr = lite_tensor->get_memory_ptr();
  211. auto src_layout = lite_tensor->get_layout();
  212. input_tensor->reset(src_ptr, src_layout);
  213. network->forward();
  214. network->wait();
  215. for (size_t i = 0; i < nr_threads; i++) {
  216. for (size_t j = i + 1; j < nr_threads; j++) {
  217. ASSERT_NE(thread_ids[i], thread_ids[j]);
  218. }
  219. }
  220. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  221. compare_lite_tensor<float>(output_tensor, result_mgb);
  222. }
  223. TEST(TestNetWork, BasicCryptAes) {
  224. Config config;
  225. auto lite_tensor = get_input_data("./input_data.npy");
  226. std::string model_path = "./shufflenet.mge";
  227. std::string model_crypt_path = "./shufflenet_crypt_aes.mge";
  228. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  229. config.bare_model_cryption_name = "AES_default";
  230. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  231. compare_lite_tensor<float>(result_lite, result_mgb);
  232. }
  233. TEST(TestNetWork, BasicCryptRc4) {
  234. Config config;
  235. auto lite_tensor = get_input_data("./input_data.npy");
  236. std::string model_path = "./shufflenet.mge";
  237. std::string model_crypt_path = "./shufflenet_crypt_rc4.mge";
  238. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  239. config.bare_model_cryption_name = "RC4_default";
  240. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  241. compare_lite_tensor<float>(result_lite, result_mgb);
  242. }
  243. TEST(TestNetWork, PackedCryptRc4) {
  244. Config config;
  245. auto lite_tensor = get_input_data("./input_data.npy");
  246. std::string model_path = "./shufflenet.mge";
  247. std::string model_crypt_path = "./test_packed_model_rc4.lite";
  248. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  249. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  250. compare_lite_tensor<float>(result_lite, result_mgb);
  251. }
  252. TEST(TestNetWork, BasicCryptSfRc4) {
  253. Config config;
  254. auto lite_tensor = get_input_data("./input_data.npy");
  255. std::string model_path = "./shufflenet.mge";
  256. std::string model_crypt_path = "./shufflenet_crypt_sfrc4.mge";
  257. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  258. config.bare_model_cryption_name = "SIMPLE_FAST_RC4_default";
  259. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  260. compare_lite_tensor<float>(result_lite, result_mgb);
  261. }
  262. TEST(TestNetWork, ResetInput) {
  263. Config config;
  264. auto tensor = get_input_data("./input_data.npy");
  265. std::string model_path = "./shufflenet.mge";
  266. std::string input_name = "data";
  267. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  268. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  269. network->load_model(model_path);
  270. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  271. auto src_ptr = tensor->get_memory_ptr();
  272. auto src_layout = tensor->get_layout();
  273. input_tensor->reset(src_ptr, src_layout);
  274. network->forward();
  275. network->wait();
  276. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  277. compare_lite_tensor<float>(output_tensor, result_mgb);
  278. }
  279. TEST(TestNetWork, ChangeInputShape) {
  280. Config config;
  281. auto tensor = get_input_data("./input_data.npy");
  282. std::string model_path = "./shufflenet.mge";
  283. std::string input_name = "data";
  284. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  285. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  286. network->load_model(model_path);
  287. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  288. auto src_layout = Layout{{2, 3, 200, 200}, 4, LiteDataType::LITE_FLOAT};
  289. input_tensor->set_layout(src_layout);
  290. std::shared_ptr<Tensor> input_tensor2 = network->get_io_tensor(input_name);
  291. //! Check memory is equal
  292. ASSERT_EQ(input_tensor->get_memory_ptr(), input_tensor2->get_memory_ptr());
  293. network->forward();
  294. network->wait();
  295. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  296. auto output_layout = output_tensor->get_layout();
  297. ASSERT_EQ(output_layout.shapes[0], 2);
  298. ASSERT_EQ(output_layout.shapes[1], 1000);
  299. }
  300. TEST(TestNetWork, ResetOutput) {
  301. Config config;
  302. auto tensor = get_input_data("./input_data.npy");
  303. std::string model_path = "./shufflenet.mge";
  304. std::string input_name = "data";
  305. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  306. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  307. network->load_model(model_path);
  308. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  309. auto src_ptr = tensor->get_memory_ptr();
  310. auto src_layout = tensor->get_layout();
  311. input_tensor->reset(src_ptr, src_layout);
  312. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  313. auto result_tensor = std::make_shared<Tensor>(
  314. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  315. void* out_data = result_tensor->get_memory_ptr();
  316. output_tensor->reset(out_data, result_tensor->get_layout());
  317. network->forward();
  318. network->wait();
  319. compare_lite_tensor<float>(output_tensor, result_mgb);
  320. }
  321. TEST(TestNetWork, OutputNoCopy) {
  322. Config config;
  323. config.options.force_output_use_user_specified_memory = true;
  324. auto tensor = get_input_data("./input_data.npy");
  325. std::string model_path = "./shufflenet.mge";
  326. std::string input_name = "data";
  327. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  328. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  329. network->load_model(model_path);
  330. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  331. auto src_ptr = tensor->get_memory_ptr();
  332. auto src_layout = tensor->get_layout();
  333. input_tensor->reset(src_ptr, src_layout);
  334. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  335. size_t times = 5;
  336. std::vector<std::shared_ptr<Tensor>> result_tensors;
  337. for (size_t i = 0; i < times; i++) {
  338. auto tmp = std::make_shared<Tensor>(
  339. LiteDeviceType::LITE_CPU,
  340. Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  341. result_tensors.push_back(tmp);
  342. }
  343. for (size_t i = 0; i < times; i++) {
  344. void* out_data = result_tensors[i]->get_memory_ptr();
  345. output_tensor->reset(out_data, result_tensors[i]->get_layout());
  346. network->forward();
  347. network->wait();
  348. ASSERT_EQ(output_tensor->get_memory_ptr(), out_data);
  349. compare_lite_tensor<float>(output_tensor, result_mgb);
  350. }
  351. for (size_t i = 0; i < times; i++) {
  352. compare_lite_tensor<float>(result_tensors[i], result_mgb);
  353. }
  354. }
  355. TEST(TestNetWork, OutputDynamicAlloc) {
  356. Config config;
  357. config.options.force_output_dynamic_alloc = true;
  358. auto tensor = get_input_data("./input_data.npy");
  359. std::string model_path = "./shufflenet.mge";
  360. std::string input_name = "data";
  361. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  362. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  363. network->load_model(model_path);
  364. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  365. auto src_ptr = tensor->get_memory_ptr();
  366. auto src_layout = tensor->get_layout();
  367. input_tensor->reset(src_ptr, src_layout);
  368. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  369. size_t times = 5;
  370. for (size_t i = 0; i < times; i++) {
  371. network->forward();
  372. network->wait();
  373. compare_lite_tensor<float>(output_tensor, result_mgb);
  374. }
  375. }
  376. TEST(TestNetWork, AsyncExec) {
  377. Config config;
  378. config.options.var_sanity_check_first_run = false;
  379. auto tensor = get_input_data("./input_data.npy");
  380. std::string model_path = "./shufflenet.mge";
  381. std::string input_name = "data";
  382. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  383. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  384. network->load_model(model_path);
  385. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  386. auto src_ptr = tensor->get_memory_ptr();
  387. auto src_layout = tensor->get_layout();
  388. input_tensor->reset(src_ptr, src_layout);
  389. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  390. auto result_tensor = std::make_shared<Tensor>(
  391. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  392. void* out_data = result_tensor->get_memory_ptr();
  393. output_tensor->reset(out_data, result_tensor->get_layout());
  394. //! set async mode and callback
  395. volatile bool finished = false;
  396. network->set_async_callback([&finished]() { finished = true; });
  397. network->forward();
  398. size_t count = 0;
  399. while (finished == false) {
  400. count++;
  401. }
  402. ASSERT_GT(count, 0);
  403. compare_lite_tensor<float>(output_tensor, result_mgb);
  404. }
  405. TEST(TestNetWork, CPUDeviceInput) {
  406. auto tensor = get_input_data("./input_data.npy");
  407. Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
  408. std::string model_path = "./shufflenet.mge";
  409. std::string input_name = "data";
  410. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  411. NetworkIO IO;
  412. bool is_host = false;
  413. IO.inputs.push_back({input_name, is_host});
  414. std::shared_ptr<Network> network = std::make_shared<Network>(IO);
  415. network->load_model(model_path);
  416. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  417. auto src_ptr = tensor->get_memory_ptr();
  418. input_tensor->reset(src_ptr, layout);
  419. network->forward();
  420. network->wait();
  421. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  422. compare_lite_tensor<float>(output_tensor, result_mgb);
  423. }
  424. TEST(TestNetWork, ShareTensorWith) {
  425. auto tensor = get_input_data("./input_data.npy");
  426. std::string model_path = "./shufflenet.mge";
  427. std::string input_name = "data";
  428. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  429. std::shared_ptr<Network> network = std::make_shared<Network>();
  430. network->load_model(model_path);
  431. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  432. input_tensor->share_memory_with(*tensor);
  433. network->forward();
  434. network->wait();
  435. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  436. compare_lite_tensor<float>(output_tensor, result_mgb);
  437. }
  438. TEST(TestNetWork, InputCallBack) {
  439. auto tensor = get_input_data("./input_data.npy");
  440. std::string model_path = "./shufflenet.mge";
  441. std::string input_name = "data";
  442. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  443. NetworkIO ios;
  444. bool is_host = false;
  445. ios.inputs.push_back({input_name, is_host});
  446. std::shared_ptr<Network> network = std::make_shared<Network>(ios);
  447. network->load_model(model_path);
  448. volatile bool finised_check_input = false;
  449. auto input_callback =
  450. [&tensor, &finised_check_input,
  451. input_name](const std::unordered_map<
  452. std::string, std::pair<IO, std::shared_ptr<Tensor>>>&
  453. input_map) {
  454. ASSERT_EQ(input_map.size(), 1);
  455. auto tensor_input = input_map.at(input_name).second;
  456. compare_lite_tensor<float>(tensor_input, tensor);
  457. finised_check_input = true;
  458. };
  459. network->set_start_callback(input_callback);
  460. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  461. input_tensor->share_memory_with(*tensor);
  462. network->forward();
  463. network->wait();
  464. ASSERT_TRUE(finised_check_input);
  465. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  466. compare_lite_tensor<float>(output_tensor, result_mgb);
  467. }
  468. TEST(TestNetWork, OutputCallBack) {
  469. auto tensor = get_input_data("./input_data.npy");
  470. std::string model_path = "./shufflenet.mge";
  471. std::string input_name = "data";
  472. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  473. std::shared_ptr<Network> network = std::make_shared<Network>();
  474. network->load_model(model_path);
  475. auto output_name = network->get_output_name(0);
  476. volatile bool finised_check_output = false;
  477. auto output_callback =
  478. [&result_mgb, &finised_check_output,
  479. output_name](const std::unordered_map<
  480. std::string, std::pair<IO, std::shared_ptr<Tensor>>>&
  481. output_map) {
  482. ASSERT_EQ(output_map.size(), 1);
  483. auto tensor_output = output_map.at(output_name).second;
  484. compare_lite_tensor<float>(tensor_output, result_mgb);
  485. finised_check_output = true;
  486. };
  487. network->set_finish_callback(output_callback);
  488. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  489. input_tensor->share_memory_with(*tensor);
  490. network->forward();
  491. network->wait();
  492. ASSERT_TRUE(finised_check_output);
  493. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  494. compare_lite_tensor<float>(output_tensor, result_mgb);
  495. }
  496. TEST(TestNetWork, OutputShapeOnly) {
  497. auto tensor = get_input_data("./input_data.npy");
  498. std::string model_path = "./shufflenet.mge";
  499. std::string input_name = "data";
  500. std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  501. NetworkIO IO;
  502. bool is_host = true;
  503. IO.outputs.push_back({output_name, is_host, LiteIOType::LITE_IO_SHAPE});
  504. Config config;
  505. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  506. network->load_model(model_path);
  507. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  508. std::shared_ptr<Tensor> output_tensor = network->get_io_tensor(output_name);
  509. auto src_ptr = tensor->get_memory_ptr();
  510. auto src_layout = tensor->get_layout();
  511. input_tensor->reset(src_ptr, src_layout);
  512. network->forward();
  513. network->wait();
  514. ASSERT_EQ(output_tensor->get_tensor_total_size_in_byte() / sizeof(float), 1000);
  515. }
  516. TEST(TestNetWork, ProfileIOdump) {
  517. auto tensor = get_input_data("./input_data.npy");
  518. std::string model_path = "./shufflenet.mge";
  519. std::string input_name = "data";
  520. NetworkIO IO;
  521. Config config;
  522. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  523. network->enable_profile_performance("./profile.json");
  524. network->load_model(model_path);
  525. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  526. auto src_ptr = tensor->get_memory_ptr();
  527. auto src_layout = tensor->get_layout();
  528. input_tensor->reset(src_ptr, src_layout);
  529. network->forward();
  530. network->wait();
  531. ASSERT_TRUE(fopen("./profile.json", "r"));
  532. Runtime::enable_io_txt_dump(network, "./io_txt_dump.txt");
  533. network->forward();
  534. network->wait();
  535. ASSERT_TRUE(fopen("./io_txt_dump.txt", "r"));
  536. }
  537. TEST(TestNetWork, LoadPackedModel) {
  538. auto tensor = get_input_data("./input_data.npy");
  539. std::string model_path = "./test_packed_model.lite";
  540. std::string input_name = "data";
  541. NetworkIO IO;
  542. Config config;
  543. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  544. network->load_model(model_path);
  545. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  546. auto src_ptr = tensor->get_memory_ptr();
  547. auto src_layout = tensor->get_layout();
  548. input_tensor->reset(src_ptr, src_layout);
  549. network->forward();
  550. network->wait();
  551. }
  552. TEST(TestNetWork, GetDeviceType) {
  553. auto tensor = get_input_data("./input_data.npy");
  554. std::string model_path = "./shufflenet.mge";
  555. Config config;
  556. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  557. network->load_model(model_path);
  558. ASSERT_TRUE(network->get_device_type() == LiteDeviceType::LITE_CPU);
  559. }
  560. TEST(TestNetWork, GetModelExtraInfo) {
  561. std::string model_path = "./track_640_320_pack_model_rc4_with_info.lite";
  562. Config config;
  563. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  564. network->load_model(model_path);
  565. auto& extra_info = network->get_model_extra_info();
  566. ASSERT_TRUE(extra_info.size() > 0);
  567. printf("extra_info %s \n", extra_info.c_str());
  568. }
  569. #ifndef __IN_TEE_ENV__
  570. #if MGB_ENABLE_JSON
  571. TEST(TestNetWork, GetMemoryInfo) {
  572. Config config;
  573. auto lite_tensor = get_input_data("./input_data.npy");
  574. std::string model_path = "./shufflenet.mge";
  575. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  576. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  577. Runtime::set_cpu_threads_number(network, 2);
  578. network->load_model(model_path);
  579. network->get_static_memory_alloc_info();
  580. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  581. auto src_ptr = lite_tensor->get_memory_ptr();
  582. auto src_layout = lite_tensor->get_layout();
  583. input_tensor->reset(src_ptr, src_layout);
  584. network->forward();
  585. network->wait();
  586. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  587. compare_lite_tensor<float>(output_tensor, result_mgb);
  588. }
  589. #endif
  590. #endif
  591. #if LITE_WITH_CUDA
  592. TEST(TestNetWork, BasicDevice) {
  593. auto lite_tensor = get_input_data("./input_data.npy");
  594. Config config;
  595. config.device_type = LiteDeviceType::LITE_CUDA;
  596. std::string model_path = "./shufflenet.mge";
  597. auto result_lite = mgelite_lar(model_path, config, "data", lite_tensor);
  598. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  599. compare_lite_tensor<float>(result_lite, result_mgb);
  600. }
  601. TEST(TestNetWork, DeviceInput) {
  602. auto tensor = get_input_data("./input_data.npy");
  603. Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
  604. std::string model_path = "./shufflenet.mge";
  605. std::string input_name = "data";
  606. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  607. NetworkIO IO;
  608. bool is_host = false;
  609. IO.inputs.push_back({input_name, is_host});
  610. Config config;
  611. config.device_type = LiteDeviceType::LITE_CUDA;
  612. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  613. network->load_model(model_path);
  614. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  615. auto tensor_cuda = Tensor(LiteDeviceType::LITE_CUDA, layout);
  616. tensor_cuda.copy_from(*tensor);
  617. auto src_ptr = tensor_cuda.get_memory_ptr();
  618. input_tensor->reset(src_ptr, layout);
  619. network->forward();
  620. network->wait();
  621. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  622. compare_lite_tensor<float>(output_tensor, result_mgb);
  623. }
  624. TEST(TestNetWork, ChangeInputShapeDevice) {
  625. Config config;
  626. auto tensor = get_input_data("./input_data.npy");
  627. std::string model_path = "./shufflenet.mge";
  628. std::string input_name = "data";
  629. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  630. config.device_type = LiteDeviceType::LITE_CUDA;
  631. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  632. network->load_model(model_path);
  633. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  634. auto src_layout = Layout{{2, 3, 200, 200}, 4, LiteDataType::LITE_FLOAT};
  635. input_tensor->set_layout(src_layout);
  636. std::shared_ptr<Tensor> input_tensor2 = network->get_io_tensor(input_name);
  637. //! Check memory is equal
  638. ASSERT_EQ(input_tensor->get_memory_ptr(), input_tensor2->get_memory_ptr());
  639. network->forward();
  640. network->wait();
  641. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  642. auto output_layout = output_tensor->get_layout();
  643. ASSERT_EQ(output_layout.shapes[0], 2);
  644. ASSERT_EQ(output_layout.shapes[1], 1000);
  645. }
  646. TEST(TestNetWork, DeviceOutput) {
  647. auto tensor = get_input_data("./input_data.npy");
  648. std::string model_path = "./shufflenet.mge";
  649. std::string input_name = "data";
  650. std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  651. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  652. NetworkIO IO;
  653. bool is_host = false;
  654. IO.outputs.push_back({output_name, is_host});
  655. Config config;
  656. config.device_type = LiteDeviceType::LITE_CUDA;
  657. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  658. network->load_model(model_path);
  659. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  660. std::shared_ptr<Tensor> output_tensor_cuda = network->get_io_tensor(output_name);
  661. auto src_ptr = tensor->get_memory_ptr();
  662. auto src_layout = tensor->get_layout();
  663. input_tensor->reset(src_ptr, src_layout);
  664. network->forward();
  665. network->wait();
  666. auto output_tensor = std::make_shared<Tensor>();
  667. output_tensor->copy_from(*output_tensor_cuda);
  668. compare_lite_tensor<float>(output_tensor, result_mgb);
  669. }
  670. TEST(TestNetWork, WrongIONameDevice) {
  671. auto tensor = get_input_data("./input_data.npy");
  672. Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
  673. std::string model_path = "./shufflenet.mge";
  674. std::string input_name = "data";
  675. std::string input_name_wrong = "data0";
  676. std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  677. std::string output_name_wrong = "w_TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  678. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  679. NetworkIO IO;
  680. bool is_host = false;
  681. IO.inputs.push_back({input_name, is_host});
  682. IO.outputs.push_back({output_name, is_host});
  683. IO.outputs.push_back({output_name_wrong, is_host});
  684. Config config;
  685. config.device_type = LiteDeviceType::LITE_CUDA;
  686. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  687. network->load_model(model_path);
  688. auto tensor_cuda = Tensor(LiteDeviceType::LITE_CUDA, layout);
  689. tensor_cuda.copy_from(*tensor);
  690. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  691. auto src_ptr = tensor_cuda.get_memory_ptr();
  692. auto src_layout = tensor_cuda.get_layout();
  693. input_tensor->reset(src_ptr, src_layout);
  694. std::shared_ptr<Tensor> output_tensor_cuda = network->get_io_tensor(output_name);
  695. network->forward();
  696. network->wait();
  697. auto output_tensor = std::make_shared<Tensor>();
  698. output_tensor->copy_from(*output_tensor_cuda);
  699. compare_lite_tensor<float>(output_tensor, result_mgb);
  700. }
  701. TEST(TestNetWork, ConfigIONameDevice) {
  702. std::string model_path = "./model.mgb";
  703. NetworkIO IO;
  704. bool is_host = false;
  705. IO.outputs.push_back({"clsfy", is_host});
  706. Config config;
  707. config.device_type = LiteDeviceType::LITE_CUDA;
  708. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  709. network->compute_only_configured_output();
  710. network->load_model(model_path);
  711. ASSERT_EQ(network->get_all_output_name().size(), 1);
  712. ASSERT_EQ(network->get_all_output_name()[0], "clsfy");
  713. std::shared_ptr<Network> network2 = std::make_shared<Network>(config, IO);
  714. network2->load_model(model_path);
  715. ASSERT_EQ(network2->get_all_output_name().size(), 2);
  716. }
  717. TEST(TestNetWork, SetDeviceIdDeviceTest) {
  718. #if LITE_WITH_CUDA
  719. if (get_device_count(LITE_CUDA) <= 1)
  720. return;
  721. #endif
  722. std::string model_path = "./model.mgb";
  723. NetworkIO IO;
  724. bool is_host = false;
  725. IO.inputs.push_back({"data", is_host});
  726. IO.outputs.push_back({"clsfy", is_host});
  727. Config config;
  728. config.device_type = LiteDeviceType::LITE_CUDA;
  729. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  730. network->set_device_id(1);
  731. network->load_model(model_path);
  732. auto inputs_names = network->get_all_input_name();
  733. for (auto name : inputs_names) {
  734. auto tensor = network->get_io_tensor(name);
  735. ASSERT_EQ(tensor->get_device_id(), 1);
  736. if (name == "idx") {
  737. int* index_ptr = static_cast<int*>(tensor->get_memory_ptr());
  738. for (int i = 0; i < 23; i++) {
  739. index_ptr[i] = i % 3;
  740. }
  741. }
  742. if (name == "landmark") {
  743. float* landmakrk_ptr = static_cast<float*>(tensor->get_memory_ptr());
  744. for (int i = 0; i < 23 * 18 * 2; i++) {
  745. landmakrk_ptr[i] = 0.1f;
  746. }
  747. }
  748. }
  749. auto outputs_names = network->get_all_output_name();
  750. for (auto name : outputs_names) {
  751. auto tensor = network->get_io_tensor(name);
  752. ASSERT_EQ(tensor->get_device_id(), 1);
  753. }
  754. network->forward();
  755. network->wait();
  756. }
  757. TEST(TestNetWork, SetStreamIdDeviceTest) {
  758. std::string model_path = "./model.mgb";
  759. NetworkIO IO;
  760. bool is_host = false;
  761. IO.inputs.push_back({"data", is_host});
  762. IO.outputs.push_back({"clsfy", is_host});
  763. Config config;
  764. config.device_type = LiteDeviceType::LITE_CUDA;
  765. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  766. network->set_stream_id(1);
  767. network->load_model(model_path);
  768. auto inputs_names = network->get_all_input_name();
  769. for (auto name : inputs_names) {
  770. auto tensor = network->get_io_tensor(name);
  771. if (name == "idx") {
  772. int* index_ptr = static_cast<int*>(tensor->get_memory_ptr());
  773. for (int i = 0; i < 23; i++) {
  774. index_ptr[i] = i % 3;
  775. }
  776. }
  777. if (name == "landmark") {
  778. float* landmakrk_ptr = static_cast<float*>(tensor->get_memory_ptr());
  779. for (int i = 0; i < 23 * 18 * 2; i++) {
  780. landmakrk_ptr[i] = 0.1f;
  781. }
  782. }
  783. }
  784. network->forward();
  785. network->wait();
  786. }
  787. #if CUDART_VERSION >= 10000
  788. TEST(TestNetWork, DeviceAsyncExec) {
  789. auto tensor = get_input_data("./input_data.npy");
  790. Config config;
  791. config.device_type = LiteDeviceType::LITE_CUDA;
  792. config.options.var_sanity_check_first_run = false;
  793. std::string model_path = "./shufflenet.mge";
  794. std::string input_name = "data";
  795. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  796. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  797. network->load_model(model_path);
  798. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  799. auto src_ptr = tensor->get_memory_ptr();
  800. auto src_layout = tensor->get_layout();
  801. input_tensor->reset(src_ptr, src_layout);
  802. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  803. auto result_tensor = std::make_shared<Tensor>(
  804. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  805. void* out_data = result_tensor->get_memory_ptr();
  806. output_tensor->reset(out_data, result_tensor->get_layout());
  807. //! set async mode and callback
  808. volatile bool finished = false;
  809. network->set_async_callback([&finished]() { finished = true; });
  810. network->forward();
  811. size_t count = 0;
  812. while (finished == false) {
  813. count++;
  814. }
  815. ASSERT_GT(count, 0);
  816. compare_lite_tensor<float>(output_tensor, result_mgb);
  817. }
  818. #endif
  819. #endif
  820. #if MGB_ATLAS
  821. TEST(TestNetWork, AtlasLoadNoDevice) {
  822. lite::Config config;
  823. config.device_type = LiteDeviceType::LITE_DEVICE_DEFAULT;
  824. auto network = std::make_shared<lite::Network>(config);
  825. network->load_model("./model_atlas.mgb");
  826. network->forward();
  827. network->wait();
  828. }
  829. TEST(TestNetWork, AtlasLoadDeviceInput) {
  830. lite::NetworkIO networkio;
  831. lite::IO input_data_io = {};
  832. input_data_io.name = "data";
  833. input_data_io.is_host = false;
  834. networkio.inputs.emplace_back(input_data_io);
  835. lite::IO input_input0_io = {};
  836. input_input0_io.name = "input0";
  837. input_input0_io.is_host = false;
  838. networkio.inputs.emplace_back(input_input0_io);
  839. lite::Config config;
  840. config.device_type = LiteDeviceType::LITE_DEVICE_DEFAULT;
  841. auto network = std::make_shared<lite::Network>(config, networkio);
  842. network->load_model("./model_atlas.mgb");
  843. network->forward();
  844. network->wait();
  845. }
  846. TEST(TestNetWork, AtlasLoadAtlas) {
  847. lite::Config config;
  848. config.device_type = LiteDeviceType::LITE_ATLAS;
  849. auto network = std::make_shared<lite::Network>(config);
  850. network->load_model("./model_atlas.mgb");
  851. network->forward();
  852. network->wait();
  853. }
  854. TEST(TestNetWork, AtlasLoadAtlasDeviceInput) {
  855. lite::NetworkIO networkio;
  856. lite::IO input_data_io = {};
  857. input_data_io.name = "data";
  858. input_data_io.is_host = false;
  859. networkio.inputs.emplace_back(input_data_io);
  860. lite::IO input_input0_io = {};
  861. input_input0_io.name = "input0";
  862. input_input0_io.is_host = false;
  863. networkio.inputs.emplace_back(input_input0_io);
  864. lite::Config config;
  865. config.device_type = LiteDeviceType::LITE_ATLAS;
  866. auto network = std::make_shared<lite::Network>(config, networkio);
  867. network->load_model("./model_atlas.mgb");
  868. network->forward();
  869. network->wait();
  870. }
  871. TEST(TestNetWork, AtlasDeviceID) {
  872. lite::Config config;
  873. config.device_type = LiteDeviceType::LITE_ATLAS;
  874. auto network = std::make_shared<lite::Network>(config);
  875. network->set_device_id(1);
  876. network->load_model("./model_atlas.mgb");
  877. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  878. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  879. network->forward();
  880. network->wait();
  881. ASSERT_EQ(output_tensor->get_device_id(), 1);
  882. }
  883. #endif
  884. #endif
  885. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台