|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085 |
- /**
- * \file dnn/test/x86/conv_bias.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- */
- #include "src/x86/utils.h"
- #include "test/x86/fixture.h"
-
- #include "megdnn/opr_param_defs.h"
- #include "megdnn/oprs.h"
- #include "test/common/benchmarker.h"
- #include "test/common/checker.h"
- #include "test/common/conv_bias.h"
- #include "test/common/rng.h"
- #include "test/common/tensor.h"
- #include "test/common/workspace_wrapper.h"
- namespace megdnn {
- namespace test {
-
- TEST_F(X86, CONV_BIAS_FORWARD) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_args();
- Checker<ConvBiasForward> checker(handle());
- NormalRNG default_rng;
- ConstValue const_val;
- for (auto&& arg : args) {
- checker.set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_rng(0, &default_rng)
- .set_rng(1, &default_rng)
- .set_rng(2, &default_rng)
- .set_epsilon(1e-3)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- TEST_F(X86_MULTI_THREADS, AVX2_CONV_BIAS_DIRECT_STRIDE1_INT8x8x32) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- param.sparse = param::ConvBias::Sparse::DENSE;
- //! no bias
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
-
- param.sparse = param::ConvBias::Sparse::GROUP;
- //! no bias
- args.emplace_back(param, TensorShape{2, 2 * ic, h, w},
- TensorShape{2, oc / 2, ic, kernel, kernel},
- TensorShape{});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t pad : {0, 1})
- for (size_t oc : {4, 8, 13, 16, 24})
- for (size_t ic : {2, 3, 7, 10})
- for (size_t h : {10, 11})
- for (size_t w : {8, 10})
- for (NonlineMode nonline_mode :
- {NonlineMode::IDENTITY})
- run(oc, ic, w, h, kernel, pad, nonline_mode);
-
- Checker<ConvBias> checker(handle());
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Int8())
- .set_dtype(2, dtype::Int32())
- .set_dtype(4, dtype::Int32())
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .set_epsilon(1e-3);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE1"));
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- TEST_F(X86_MULTI_THREADS, AVX2_CONV_BIAS_DIRECT_STRIDE1_QuantizedS32) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- param.sparse = param::ConvBias::Sparse::DENSE;
- //! no bias
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
-
- param.sparse = param::ConvBias::Sparse::GROUP;
- //! no bias
- args.emplace_back(param, TensorShape{2, 2 * ic, h, w},
- TensorShape{2, oc / 2, ic, kernel, kernel},
- TensorShape{});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t pad : {0, 1})
- for (size_t oc : {4, 8, 13, 16, 24})
- for (size_t ic : {2, 3, 7, 10})
- for (size_t h : {10, 11})
- for (size_t w : {8, 10})
- for (NonlineMode nonline_mode :
- {NonlineMode::IDENTITY})
- run(oc, ic, w, h, kernel, pad, nonline_mode);
-
- Checker<ConvBias> checker(handle());
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, {})
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .set_epsilon(1e-3);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE1"));
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(X86_MULTI_THREADS, AVX2_CONV_BIAS_DIRECT_STRIDE1_S8S8S8) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- param.sparse = param::ConvBias::Sparse::DENSE;
- //! no bias
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- //! bias channel
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
-
- param.sparse = param::ConvBias::Sparse::GROUP;
- //! no bias
- args.emplace_back(param, TensorShape{2, 2 * ic, h, w},
- TensorShape{2, oc / 2, ic, kernel, kernel},
- TensorShape{});
- //! bias channel
- args.emplace_back(param, TensorShape{2, 2 * ic, h, w},
- TensorShape{2, oc / 2, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
-
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t pad : {0, 1})
- for (size_t oc : {4, 8, 14, 16, 24})
- for (size_t ic : {2, 3, 7, 10})
- for (size_t h : {10, 11})
- for (size_t w : {8, 10})
- for (NonlineMode nonline_mode :
- {NonlineMode::IDENTITY, NonlineMode::RELU,
- NonlineMode::H_SWISH})
- run(oc, ic, w, h, kernel, pad, nonline_mode);
-
- Checker<ConvBias> checker(handle());
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f))
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .set_epsilon(1e-3);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE1"));
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(X86_MULTI_THREADS, AVX2_CONV_BIAS_DIRECT_STRIDE2_INT8x8x32) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 2;
- param.stride_w = 2;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- param.sparse = param::ConvBias::Sparse::DENSE;
- //! no bias
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
-
- param.sparse = param::ConvBias::Sparse::GROUP;
- //! no bias
- args.emplace_back(param, TensorShape{2, 2 * ic, h, w},
- TensorShape{2, oc / 2, ic, kernel, kernel},
- TensorShape{});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t pad : {0, 1, 2, 5})
- for (size_t oc : {4, 8, 13, 16, 24})
- for (size_t ic : {2, 3, 7, 10})
- for (size_t h : {10, 11})
- for (size_t w : {8, 10, 20})
- for (NonlineMode nonline_mode :
- {NonlineMode::IDENTITY})
- run(oc, ic, w, h, kernel, pad, nonline_mode);
-
- Checker<ConvBias> checker(handle());
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Int8())
- .set_dtype(2, dtype::Int32())
- .set_dtype(4, dtype::Int32())
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .set_epsilon(1e-3);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE2"));
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- TEST_F(X86_MULTI_THREADS, AVX2_CONV_BIAS_DIRECT_STRIDE2_QuantizedS32) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 2;
- param.stride_w = 2;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- param.sparse = param::ConvBias::Sparse::DENSE;
- //! no bias
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
-
- param.sparse = param::ConvBias::Sparse::GROUP;
- //! no bias
- args.emplace_back(param, TensorShape{2, 2 * ic, h, w},
- TensorShape{2, oc / 2, ic, kernel, kernel},
- TensorShape{});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t pad : {0, 1, 3, 5})
- for (size_t oc : {4, 8, 13, 16, 24})
- for (size_t ic : {2, 3, 7, 10})
- for (size_t h : {10, 11})
- for (size_t w : {8, 10, 19})
- for (NonlineMode nonline_mode :
- {NonlineMode::IDENTITY})
- run(oc, ic, w, h, kernel, pad, nonline_mode);
-
- Checker<ConvBias> checker(handle());
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, {})
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .set_epsilon(1e-3);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE2"));
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(X86_MULTI_THREADS, AVX2_CONV_BIAS_DIRECT_STRIDE2_S8S8S8) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 2;
- param.stride_w = 2;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- param.sparse = param::ConvBias::Sparse::DENSE;
- //! no bias
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- //! bias channel
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
-
- param.sparse = param::ConvBias::Sparse::GROUP;
- //! no bias
- args.emplace_back(param, TensorShape{2, 2 * ic, h, w},
- TensorShape{2, oc / 2, ic, kernel, kernel},
- TensorShape{});
- //! bias channel
- args.emplace_back(param, TensorShape{2, 2 * ic, h, w},
- TensorShape{2, oc / 2, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t pad : {0, 1, 3, 5})
- for (size_t oc : {4, 8, 14, 16, 24})
- for (size_t ic : {2, 3, 7, 10})
- for (size_t h : {10, 11})
- for (size_t w : {8, 10, 18})
- for (NonlineMode nonline_mode :
- {NonlineMode::IDENTITY, NonlineMode::RELU,
- NonlineMode::H_SWISH})
- run(oc, ic, w, h, kernel, pad, nonline_mode);
-
- Checker<ConvBias> checker(handle());
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f))
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .set_epsilon(1e-3);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE2"));
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(X86_MULTI_THREADS, CONV_BIAS_DIRECT_STRIDE1_SMALL_GROUP) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! no bias
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- //! bias channel
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- //! bias
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{2, oc, (h + param.pad_h * 2 - kernel) + 1,
- (w + param.pad_w * 2 - kernel) + 1});
- };
-
- for (size_t kernel : {1, 2, 3, 4, 5, 6, 7})
- for (size_t ic : {1, 4, 8, 16})
- for (size_t oc : {1, 4, 8})
- for (size_t p : {0, 2})
- for (size_t size : {20, 21, 24})
- for (NonlineMode nonline_mode :
- {NonlineMode::RELU, NonlineMode::SIGMOID,
- NonlineMode::H_SWISH, NonlineMode::IDENTITY}) {
- run(oc, ic, size, size, kernel, p, nonline_mode);
- }
-
- Checker<ConvBias> checker(handle());
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "X86_CONV_BIAS_DIRECT_STRIDE1_SMALL_GROUP"));
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(X86_MULTI_THREADS, CONV_BIAS_DIRECT_STRIDE1_LARGE_GROUP) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! no bias
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- //! bias channel
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- //! bias
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{2, oc, (h + param.pad_h * 2 - kernel) + 1,
- (w + param.pad_w * 2 - kernel) + 1});
- };
-
- for (size_t kernel : {1, 2, 3, 4, 5, 6, 7})
- for (size_t ic : {1, 4, 8, 16})
- for (size_t oc : {1, 4, 8})
- for (size_t p : {0, 2})
- for (size_t size : {20, 21, 24})
- for (NonlineMode nonline_mode :
- {NonlineMode::RELU, NonlineMode::SIGMOID,
- NonlineMode::H_SWISH, NonlineMode::IDENTITY}) {
- run(oc, ic, size, size, kernel, p, nonline_mode);
- }
-
- Checker<ConvBias> checker(handle());
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "X86_CONV_BIAS_DIRECT_STRIDE1_LARGE_GROUP"));
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(X86_MULTI_THREADS, CONV_BIAS_DIRECT_STRIDE2) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 2;
- param.stride_w = 2;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! no bias
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 4, 8, 16})
- for (size_t oc : {1, 4, 8})
- for (size_t p : {0, 2})
- for (size_t size : {20, 21, 24})
- for (NonlineMode nonline_mode :
- {NonlineMode::RELU, NonlineMode::SIGMOID,
- NonlineMode::H_SWISH, NonlineMode::IDENTITY}) {
- run(oc, ic, size, size, kernel, p, nonline_mode);
- }
-
- Checker<ConvBias> checker(handle());
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "X86_CONV_BIAS_DIRECT_STRIDE2_SMALL_GROUP"));
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "X86_CONV_BIAS_DIRECT_STRIDE2_LARGE_GROUP"));
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(X86_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! no bias
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- };
-
- for (size_t kernel : {1, 2, 3, 4, 5, 6, 7})
- for (size_t ic : {1, 4, 8, 16})
- for (size_t oc : {1, 4, 8})
- for (size_t p : {0, 2})
- for (size_t size : {20, 21, 24})
- for (NonlineMode nonline_mode :
- {NonlineMode::IDENTITY}) {
- run(oc, ic, size, size, kernel, p, nonline_mode);
- }
- //! test OC block
- run(2046, 1, 8, 8, 1, 0, NonlineMode::IDENTITY);
-
- Checker<ConvBias> checker(handle());
- UniformIntRNG rng{-50, 50};
- #define cb(algo_name) \
- checker.set_before_exec_callback( \
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name)); \
- checker.set_dtype(0, dtype::Int8()); \
- checker.set_dtype(1, dtype::Int8()); \
- checker.set_dtype(2, dtype::Int32()); \
- checker.set_dtype(4, dtype::Int32()); \
- for (auto&& arg : args) { \
- checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}}); \
- } \
- for (auto&& arg : args) { \
- checker.set_dtype(0, dtype::QuantizedS8(2.5f)) \
- .set_dtype(1, dtype::QuantizedS8(2.5f)) \
- .set_dtype(2, dtype::QuantizedS32(6.25f)) \
- .set_dtype(4, {}) \
- .set_rng(0, &rng) \
- .set_rng(1, &rng) \
- .set_rng(2, &rng) \
- .set_param(arg.param) \
- .execs({arg.src, arg.filter, {}, {}, {}}); \
- }
-
- #if defined(MEGDNN_X86_WITH_MKL_DNN)
- if (megdnn::x86::is_supported(x86::SIMDType::VNNI)) {
- cb("IM2COLMATMUL:X86_INT8X8X32_MKLDNN");
- }
- #endif
- #if MEGDNN_X86_WITH_VNNI
- if (megdnn::x86::is_supported(x86::SIMDType::VNNI)) {
- cb("IM2COLMATMUL:X86_INT8X8X32_VNNI");
- }
- #endif
- if (megdnn::x86::is_supported(x86::SIMDType::AVX2)) {
- cb("IM2COLMATMUL:X86_INT8X8X32_AVX2_2X4X16");
- cb("IM2COLMATMUL:X86_INT8X8X32_AVX2_4X16X2");
- }
- if (::megdnn::x86::is_supported(::megdnn::x86::SIMDType::SSE4_2)) {
- cb("IM2COLMATMUL:X86_INT8X8X32_SSE_4X8X2");
- }
-
- #undef cb
- }
-
- TEST_F(X86_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_FP32) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! no bias
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- args.emplace_back(
- param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, (h + 2 * p - kernel) / param.stride_h + 1,
- (w + 2 * p - kernel) / param.stride_w + 1});
- };
-
- for (size_t kernel : {1, 2, 3, 4, 5, 6, 7})
- for (size_t ic : {1, 4, 8, 16})
- for (size_t oc : {1, 4, 8, 16, 300})
- for (size_t p : {0, 2})
- for (size_t size : {8, 24})
- for (NonlineMode nonline_mode :
- {NonlineMode::IDENTITY, NonlineMode::RELU}) {
- run(oc, ic, size, size, kernel, p, nonline_mode);
- }
-
- run(2046, 8, 20, 20, 3, 1, NonlineMode::IDENTITY);
- Checker<ConvBias> checker(handle());
- #define cb(algo_name) \
- checker.set_before_exec_callback( \
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name)); \
- for (auto&& arg : args) { \
- checker.set_param(arg.param).execs( \
- {arg.src, arg.filter, arg.bias, {}, {}}); \
- }
-
- #if defined(MEGDNN_X86_WITH_MKL) || defined(MEGDNN_X86_WITH_OPENBLAS)
- cb("IM2COLMATMUL:X86_F32_BLAS");
- #endif
-
- #undef cb
- }
-
- #if defined(MEGDNN_X86_WITH_MKL)
- TEST_F(X86_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_FP32_PACKA) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! no bias
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- args.emplace_back(
- param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, (h + 2 * p - kernel) / param.stride_h + 1,
- (w + 2 * p - kernel) / param.stride_w + 1});
- param.sparse = param::ConvBias::Sparse::GROUP;
- args.emplace_back(param, TensorShape{1, 2 * ic, h, w},
- TensorShape{2, oc, ic, kernel, kernel},
- TensorShape{});
- args.emplace_back(param, TensorShape{1, 2 * ic, h, w},
- TensorShape{2, oc, ic, kernel, kernel},
- TensorShape{1, oc * 2, 1, 1});
-
- args.emplace_back(
- param, TensorShape{1, 2 * ic, h, w},
- TensorShape{2, oc, ic, kernel, kernel},
- TensorShape{1, 2 * oc, (h + 2 * param.pad_h - kernel) / 1 + 1,
- (w + 2 * param.pad_w - kernel) / 1 + 1});
- };
-
- for (size_t kernel : {1, 2, 3, 4, 5, 6, 7})
- for (size_t ic : {1, 4, 8, 16})
- for (size_t oc : {1, 4, 8, 16})
- for (size_t p : {0, 1})
- for (size_t size : {8, 24})
- for (NonlineMode nonline_mode :
- {NonlineMode::IDENTITY, NonlineMode::RELU}) {
- run(oc, ic, size, size, kernel, p, nonline_mode);
- }
-
- run(2046, 8, 20, 20, 3, 1, NonlineMode::IDENTITY);
- Checker<ConvBias> checker(handle());
- #define cb(algo_name) \
- checker.set_before_exec_callback( \
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name)); \
- for (auto&& arg : args) { \
- checker.set_param(arg.param).execs( \
- {arg.src, arg.filter, arg.bias, {}, {}}); \
- }
-
- cb("IM2COLMATMUL:X86_F32_MKL_PACKA:192");
-
- #undef cb
- }
- #endif
-
- TEST_F(X86_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QINT8) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! no bias
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- //! bias channel
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- };
-
- for (size_t kernel : {1, 2, 3, 4, 5, 6, 7})
- for (size_t ic : {1, 4, 8, 16})
- for (size_t oc : {1, 4, 8})
- for (size_t p : {0, 2})
- for (size_t size : {20, 21, 24})
- for (NonlineMode nonline_mode :
- {NonlineMode::IDENTITY, NonlineMode::RELU,
- NonlineMode::H_SWISH}) {
- run(oc, ic, size, size, kernel, p, nonline_mode);
- }
- run(2046, 8, 20, 20, 3, 1, NonlineMode::IDENTITY);
- Checker<ConvBias> checker(handle());
- #define cb(algo_name) \
- checker.set_before_exec_callback( \
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name)); \
- UniformIntRNG rng{-50, 50}; \
- for (auto&& arg : args) { \
- checker.set_dtype(0, dtype::QuantizedS8(2.5f)) \
- .set_dtype(1, dtype::QuantizedS8(2.5f)) \
- .set_dtype(2, dtype::QuantizedS32(6.25f)) \
- .set_dtype(4, dtype::QuantizedS8(60.25)) \
- .set_rng(0, &rng) \
- .set_rng(1, &rng) \
- .set_rng(2, &rng) \
- .set_param(arg.param) \
- .execs({arg.src, arg.filter, {}, {}, {}}); \
- }
-
- #if defined(MEGDNN_X86_WITH_MKL_DNN)
- if (x86::is_supported(x86::SIMDType::VNNI)) {
- cb("IM2COLMATMUL:X86_INT8X8X32_MKLDNN");
- }
- #endif
- #if MEGDNN_X86_WITH_VNNI
- if (x86::is_supported(x86::SIMDType::VNNI)) {
- cb("IM2COLMATMUL:X86_INT8X8X32_VNNI");
- }
- #endif
- if (x86::is_supported(x86::SIMDType::AVX2)) {
- cb("IM2COLMATMUL:X86_INT8X8X32_AVX2_2X4X16");
- }
-
- #undef cb
- }
-
- TEST_F(X86, CONV_BIAS_MATMUL) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! no bias
- param.sparse = param::ConvBias::Sparse::DENSE;
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- //! bias channel
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- //! bias
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{2, oc, (h + param.pad_h * 2 - kernel) + 1,
- (w + param.pad_w * 2 - kernel) + 1});
- //! gruop
- param.sparse = param::ConvBias::Sparse::GROUP;
- args.emplace_back(
- param, TensorShape{2, 2 * ic, h, w},
- TensorShape{2, oc, ic, kernel, kernel},
- TensorShape{2, 2 * oc, (h + param.pad_h * 2 - kernel) + 1,
- (w + param.pad_w * 2 - kernel) + 1});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 2, 3, 4})
- for (size_t oc : {1, 2, 3, 4})
- for (size_t p : {0, 2})
- for (size_t size : {20, 21, 22, 23, 24})
- for (NonlineMode nonline_mode :
- {NonlineMode::RELU, NonlineMode::SIGMOID,
- NonlineMode::H_SWISH, NonlineMode::IDENTITY}) {
- run(oc, ic, size, size, kernel, p, nonline_mode);
- }
-
- Checker<ConvBias> checker(handle());
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "X86_CONV_BIAS_MATMUL"));
- checker.set_epsilon(1);
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng);
-
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- #if MEGDNN_WITH_BENCHMARK
- #if defined(MEGDNN_X86_WITH_MKL_DNN)
- static void x86_benchmark_fp32_mkldnn(Handle* handle) {
- constexpr size_t RUNS = 30;
- param::ConvBias param;
-
- Benchmarker<ConvBias> benchmarker_mkldnn(handle);
- benchmarker_mkldnn.set_display(false).set_times(RUNS);
- benchmarker_mkldnn.set_before_exec_callback(
- AlgoChecker<ConvBias>("MKLDNN_CONV_FP32"));
-
- Benchmarker<ConvBias> benchmarker_im2col(handle);
- benchmarker_im2col.set_display(false).set_times(RUNS);
- benchmarker_im2col.set_before_exec_callback(
- AlgoChecker<ConvBias>("IM2COLMATMUL.+"));
- auto run = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t SZ, size_t GROUP = 1) {
- TensorShape src({N, IC, H, W}), filter({OC, IC, FS, FS}),
- bias({1, OC, 1, 1}), z({}), dst({N, OC, H / SZ, W / SZ});
- param.pad_h = FS / 2;
- param.pad_w = FS / 2;
- param.stride_h = SZ;
- param.stride_w = SZ;
- param.format = param::ConvBias::Format::NCHW;
- param.sparse = param::ConvBias::Sparse::DENSE;
- if (GROUP > 1) {
- param.sparse = param::ConvBias::Sparse::GROUP;
- filter = {GROUP, OC / GROUP, IC / GROUP, FS, FS};
- }
- auto im2col_used = benchmarker_im2col.set_param(param).exec(
- {src, filter, bias, z, dst}) /
- RUNS;
-
- src = IC < 8 ? TensorShape{N, IC, H, W}
- : TensorShape{N, IC / 8, H, W, 8};
-
- filter = IC < 8 ? TensorShape{OC / 8, FS, FS, IC, 8}
- : TensorShape{OC / 8, IC / 8, FS, FS, 8, 8};
- if (GROUP > 1 && OC == GROUP && IC == GROUP) {
- filter = {GROUP / 8, 1, 1, FS, FS, 8};
- } else if (GROUP > 1 && OC / GROUP % 8 == 0 && IC / GROUP % 8 == 0) {
- filter = {GROUP, OC / GROUP / 8, IC / GROUP / 8, FS, FS, 8, 8};
- }
- bias = {1, OC / 8, 1, 1, 8};
- z = {};
- dst = {N, OC / 8, H / SZ, W / SZ, 8};
- param.format = param::ConvBias::Format::NCHW88;
- auto mkldnn_used = benchmarker_mkldnn.set_param(param).exec(
- {src, filter, bias, z, dst}) /
- RUNS;
- float computations =
- (IC / GROUP * FS * FS + 1) * dst.total_nr_elems() * 2 * 1e-6;
- std::cout << "run " << src.to_string() << " " << filter.to_string()
- << " " << bias.to_string() << " " << dst.to_string()
- << std::endl;
- std::cout << "im2col: " << im2col_used << " ms, "
- << (computations / im2col_used) << " Gops, ";
- std::cout << "mkldnn: " << mkldnn_used << " ms, "
- << (computations / mkldnn_used) << " Gops, "
- << "spped up: " << (im2col_used / mkldnn_used) << ", ";
- std::cout << std::endl;
- };
-
- run(1, 64, 64, 56, 56, 3, 1);
-
- run(1, 3, 64, 224, 224, 3, 1);
- run(1, 3, 64, 224, 224, 7, 2);
-
- run(1, 64, 64, 56, 56, 3, 1);
- run(1, 128, 128, 28, 28, 3, 1);
- run(1, 256, 256, 14, 14, 3, 1);
- run(1, 512, 512, 7, 7, 3, 1);
- run(1, 256, 64, 56, 56, 1, 1);
- run(1, 512, 128, 28, 28, 1, 1);
- run(1, 1024, 256, 14, 14, 1, 1);
- run(1, 2048, 512, 7, 7, 1, 1);
-
- run(1, 32, 32, 112, 112, 3, 1, 32);
- run(1, 144, 144, 56, 56, 3, 1, 144);
- run(1, 192, 192, 28, 28, 3, 1, 192);
- run(1, 384, 384, 28, 28, 3, 1, 384);
- run(1, 576, 576, 14, 14, 3, 1, 576);
- run(1, 960, 960, 7, 7, 3, 1, 960);
-
- run(1, 256, 128, 56, 56, 1, 2, 1);
- run(1, 512, 256, 28, 28, 1, 2, 1);
- run(1, 1024, 512, 14, 14, 1, 2, 1);
- run(1, 96, 96, 112, 112, 3, 2, 96);
- run(1, 144, 144, 56, 56, 3, 2, 144);
- run(1, 384, 384, 28, 28, 3, 2, 384);
- run(1, 576, 576, 14, 14, 3, 2, 576);
- }
- TEST_F(X86, BENCHMARK_CONVBIAS_FP32_MKLDNN) {
- x86_benchmark_fp32_mkldnn(handle());
- }
- TEST_F(X86_MULTI_THREADS, BENCHMARK_CONVBIAS_FP32_MKLDNN) {
- x86_benchmark_fp32_mkldnn(handle());
- }
- #endif
- #endif
-
- /************************* Winograd ****************************/
- namespace{
- std::vector<conv_bias::TestArg> get_winograd_mk_nchw88_args() {
- std::vector<conv_bias::TestArg> args;
- param::ConvBias cur_param;
- cur_param.format = param::ConvBias::Format::NCHW88;
- using NLMode = param::ConvBias::NonlineMode;
-
- // clang-format off
- for (auto nlmode :
- {NLMode::IDENTITY, NLMode::RELU, NLMode::SIGMOID, NLMode::H_SWISH}) {
- for (size_t ic : {1, 2}) {
- for (size_t oc : {1, 2}) {
- for (size_t i : {9, 63}) {
-
- cur_param.mode = param::ConvBias::Mode::CROSS_CORRELATION;
- cur_param.nonlineMode = nlmode;
-
- cur_param.sparse = param::ConvBias::Sparse::DENSE;
- cur_param.pad_h = cur_param.pad_w = 1;
-
- args.emplace_back(cur_param, TensorShape{1, ic, i, i, 8},
- TensorShape{oc, ic, 3, 3, 8, 8},
- TensorShape{1, oc, 1, 1, 8});
- args.emplace_back(cur_param, TensorShape{1, ic, i, i, 8},
- TensorShape{oc, ic, 3, 3, 8, 8},TensorShape{});
- //! bias
- args.emplace_back(cur_param, TensorShape{2, ic, i, i, 8},
- TensorShape{oc, ic, 3, 3, 8, 8}, TensorShape{2, oc, i, i, 8});
-
- /*cur_param.sparse = param::ConvBias::Sparse::GROUP;
- args.emplace_back(cur_param, TensorShape{2, 2 * ic, i, i, 8},
- TensorShape{2, oc, ic, 3, 3, 8, 8},
- TensorShape{1, 2 * oc, 1, 1, 8});*/
- }}}
- // clang-format on
- //! test for multi-thread OC parallel
- cur_param.sparse = param::ConvBias::Sparse::DENSE;
- cur_param.pad_h = cur_param.pad_w = 1;
- args.emplace_back(cur_param, TensorShape{2, 1, 9, 9, 8},
- TensorShape{128, 1, 3, 3, 8, 8},
- TensorShape{1, 128, 1, 1, 8});
- /*cur_param.sparse = param::ConvBias::Sparse::GROUP;
- args.emplace_back(cur_param, TensorShape{2, 2, 9, 9, 8},
- TensorShape{2, 128, 1, 3, 3, 8, 8},
- TensorShape{1, 2 * 128, 1, 1, 8});*/
- }
- return args;
- }
- } // namespace
-
- TEST_F(X86_MULTI_THREADS, CONV_BIAS_WINOGRAD_NCHW88_F63) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_nchw88_args();
- Checker<ConvBiasForward> checker(handle());
-
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ssprintf("WINOGRAD:X86_F32MK8_8X8:8:6").c_str()));
-
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(X86_MULTI_THREADS, CONV_BIAS_WINOGRAD_NCHW88_F23) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_nchw88_args();
- Checker<ConvBiasForward> checker(handle());
-
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ssprintf("WINOGRAD:X86_F32MK8_8X8:8:2").c_str()));
-
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(X86_MULTI_THREADS, CONV_BIAS_WINOGRAD_WEIGHT_PREPROCESS) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_nchw88_args();
- Checker<ConvBiasForward> checker(handle());
- auto extra_impl = [](const TensorNDArray& tensors, uint32_t m,
- param::ConvBias param, Handle* handle) {
- megdnn_assert(param.format == param::ConvBias::Format::NCHW88);
- auto winograd_preprocess_opr =
- handle->create_operator<WinogradFilterPreprocess>();
- winograd_preprocess_opr->param().output_block_size = m;
- winograd_preprocess_opr->param().format = param::MatrixMul::Format::MK8;
- TensorLayout filter_transform_layout;
- winograd_preprocess_opr->deduce_layout(tensors[1].layout,
- filter_transform_layout);
- size_t winograd_preprocess_workspace_in_bytes =
- winograd_preprocess_opr->get_workspace_in_bytes(
- tensors[1].layout, filter_transform_layout);
-
- auto conv_bias_opr = handle->create_operator<ConvBias>();
- conv_bias_opr->param() = param;
- conv_bias_opr->param().format = param::ConvBias::Format::NCHW88_WINOGRAD;
- conv_bias_opr->param().output_block_size = m;
- size_t conv_bias_workspace_in_bytes =
- conv_bias_opr->get_workspace_in_bytes(
- tensors[0].layout, filter_transform_layout,
- tensors[2].layout, tensors[3].layout,
- tensors[4].layout);
-
- WorkspaceBundle wb(nullptr, {filter_transform_layout.span().dist_byte(),
- conv_bias_workspace_in_bytes,
- winograd_preprocess_workspace_in_bytes});
- wb.set(malloc(wb.total_size_in_bytes()));
-
- TensorND filter_transform_tensor(wb.get(0),
- std::move(filter_transform_layout));
- winograd_preprocess_opr->exec(tensors[1], filter_transform_tensor,
- wb.get_workspace(2));
- conv_bias_opr->exec(tensors[0], filter_transform_tensor, tensors[2],
- tensors[3], tensors[4], wb.get_workspace(1));
-
- free(wb.ptr());
- };
-
- auto run = [&checker, &extra_impl](
- Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- const float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(extra_impl,
- std::placeholders::_1, m,
- arg.param, handle));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
- run(handle(), args, {2, 6}, dtype::Float32(), dtype::Float32(),
- dtype::Float32(), dtype::Float32(), 1e-3f);
- }
-
- /*********************************** End winograd ************************/
- #if defined(MEGDNN_X86_WITH_MKL_DNN)
- static void x86_correctness_fp32_mkldnn_run(
- Checker<ConvBias>& checker, UniformIntRNG& rng, Handle* handle,
- ConvBiasForward::BiasMode bias_mode,
- param::ConvBias::NonlineMode noline_mode, size_t n, size_t stride,
- size_t kernel, size_t oc, size_t ic, size_t h, size_t w, size_t group) {
- auto oc_per_group = oc / group;
- auto ic_per_group = ic / group;
- bool ok_group = oc_per_group % 8 == 0 && oc_per_group > 0 &&
- (ic_per_group % 8 == 0 || ic_per_group == 3) &&
- ic_per_group > 0;
- bool ok_depthwise = oc == ic && oc == group;
- if (!(ok_group || ok_depthwise)) {
- return;
- }
- size_t pad = kernel / 2;
- size_t kernel_h = kernel;
- size_t kernel_w = kernel;
- param::ConvBias param;
- param.format = param::ConvBias::Format::NCHW88;
- param.stride_h = stride;
- param.stride_w = stride;
- param.pad_h = pad;
- param.pad_w = pad;
- param.nonlineMode = noline_mode;
- auto src_tensor_shape = TensorShape{n, ic / 8, h, w, 8};
- if (ic == 3) {
- src_tensor_shape = TensorShape{n, ic, h, w};
- }
-
- auto weight_tensor_shape =
- TensorShape{oc / 8, ic / 8, kernel_h, kernel_w, 8, 8};
- if (ic == 3) {
- weight_tensor_shape = TensorShape{oc / 8, kernel_h, kernel_w, ic, 8};
- }
-
- auto bias_tensor_shape = TensorShape{};
-
- if (bias_mode == megdnn::BiasMode::BROADCAST_CHANNEL_BIAS) {
- bias_tensor_shape = {1, oc / 8, 1, 1, 8};
- } else if (bias_mode == megdnn::BiasMode::BIAS) {
- TensorLayout dst_layout;
- auto ConvBiasOp = handle->create_operator<ConvBias>();
- ConvBiasOp->param() = param;
- ConvBiasOp->deduce_layout({src_tensor_shape, dtype::Float32()},
- {weight_tensor_shape, dtype::Float32()}, {},
- {}, dst_layout);
- bias_tensor_shape = dst_layout;
- }
-
- if (group == 1) {
- param.sparse = param::ConvBias::Sparse::DENSE;
- } else if (group > 1 && ic / group == 1 && oc / group == 1) {
- param.sparse = param::ConvBias::Sparse::GROUP;
- weight_tensor_shape =
- TensorShape{group / 8, 1, 1, kernel_h, kernel_w, 8};
- } else if (group > 1 && oc / group % 8 == 0 && oc / group > 0 &&
- ic / group % 8 == 0 && ic / group > 0) {
- param.sparse = param::ConvBias::Sparse::GROUP;
- weight_tensor_shape = TensorShape{
- group, oc / group / 8, ic / group / 8, kernel_h, kernel_w, 8,
- 8};
- }
- checker.set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_dtype(4, dtype::Float32())
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .set_epsilon(1e-3)
- .set_param(param)
- .execs({src_tensor_shape,
- weight_tensor_shape,
- bias_tensor_shape,
- {},
- {}});
- }
-
- static void x86_correctness_fp32_mkldnn(Handle* handle) {
- Checker<ConvBias> checker(handle);
- UniformIntRNG rng{-127, 127};
-
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "MKLDNN_CONV_FP32"));
-
- for (auto bias_mode :
- {megdnn::BiasMode::NO_BIAS, megdnn::BiasMode::BROADCAST_CHANNEL_BIAS,
- megdnn::BiasMode::BIAS})
- for (auto noline_mode : {param::ConvBias::NonlineMode::IDENTITY,
- param::ConvBias::NonlineMode::SIGMOID,
- param::ConvBias::NonlineMode::H_SWISH})
- for (size_t n : {1, 2})
- for (size_t stride : {1, 2})
- for (size_t kernel : {3, 5, 7})
- for (size_t oc : {8, 16})
- for (size_t ic : {3, 8, 16})
- for (size_t h : {22, 33})
- for (size_t w : {22, 33}) {
- for (size_t group = 1;
- group <= std::min(oc, ic);
- ++group) {
- x86_correctness_fp32_mkldnn_run(
- checker, rng, handle,
- bias_mode, noline_mode, n,
- stride, kernel, oc, ic, h,
- w, group);
- }
- }
- }
-
- TEST_F(X86, CONV_BIAS_DIRECT_MKLDNN_C8) {
- x86_correctness_fp32_mkldnn(handle());
- }
- TEST_F(X86_MULTI_THREADS, CONV_BIAS_DIRECT_MKLDNN_C8) {
- x86_correctness_fp32_mkldnn(handle());
- }
-
- TEST_F(X86, CONV_BIAS_MKL_DNN_MATMUL_INT8) {
- using namespace conv_bias;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! no bias
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 2, 3, 4})
- for (size_t oc : {1, 2, 4})
- for (size_t p : {0, 2})
- for (size_t size : {20, 21, 22, 23, 24})
- for (NonlineMode nonline_mode :
- {NonlineMode::IDENTITY}) {
- run(oc, ic, size, size, kernel, p, nonline_mode);
- }
-
- Checker<ConvBias> checker(handle());
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "MKLDNN_MATMUL_INT8"));
- checker.set_epsilon(1);
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Int8())
- .set_dtype(2, dtype::Int32())
- .set_dtype(4, dtype::Int32())
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng);
-
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(X86, CONV_BIAS_MKL_DNN_INT8) {
- using namespace conv_bias;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! no bias
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 2, 3, 4})
- for (size_t oc : {1, 2, 4})
- for (size_t p : {0, 2})
- for (size_t size : {20, 22, 24})
- for (NonlineMode nonline_mode :
- {NonlineMode::IDENTITY}) {
- run(oc, ic, size, size, kernel, p, nonline_mode);
- }
-
- Checker<ConvBias> checker(handle());
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("MKLDNN_INT8"));
- checker.set_epsilon(1);
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Int8())
- .set_dtype(2, dtype::Int32())
- .set_dtype(4, dtype::Int32())
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng);
-
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(X86_MULTI_THREADS, CONV_BIAS_MKL_DNN_INT8) {
- using namespace conv_bias;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! no bias
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 2, 3, 4})
- for (size_t oc : {1, 2, 4})
- for (size_t p : {0, 2})
- for (size_t size : {20, 22, 24})
- for (NonlineMode nonline_mode :
- {NonlineMode::IDENTITY}) {
- run(oc, ic, size, size, kernel, p, nonline_mode);
- }
-
- Checker<ConvBias> checker(handle());
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("MKLDNN_INT8"));
- checker.set_epsilon(1);
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Int8())
- .set_dtype(2, dtype::Int32())
- .set_dtype(4, dtype::Int32())
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng);
-
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- #endif
-
- #if MEGDNN_WITH_BENCHMARK
- namespace {
- void benchmark_impl(const param::ConvBias param,
- std::vector<std::pair<SmallVector<TensorShape>, float>>&
- shapes_and_computation,
- const std::string algo_name, size_t RUNS,
- TaskExecutorConfig&& multi_thread_config,
- TaskExecutorConfig&& single_thread_config,
- std::vector<DType> dtype_v) {
- std::vector<DType> data_type = {dtype::Float32(), dtype::Float32(),
- dtype::Float32(), dtype::Float32()};
-
- std::vector<float> multi_thread_times, single_thread_times;
- {
- auto multi_thread_hanle =
- create_cpu_handle(0, true, &multi_thread_config);
- auto benchmarker = Benchmarker<ConvBias>(multi_thread_hanle.get());
- benchmarker.set_times(RUNS)
- .set_display(false)
- .set_dtype(0, dtype_v[0])
- .set_dtype(1, dtype_v[1])
- .set_dtype(2, dtype_v[2])
- .set_dtype(4, dtype_v[3])
- .set_param(param)
- .set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(
- algo_name.c_str()));
- for (auto shape : shapes_and_computation) {
- multi_thread_times.push_back(benchmarker.exec(shape.first) / RUNS);
- }
- }
- {
- auto single_thread_handle =
- create_cpu_handle(0, true, &single_thread_config);
- auto benchmarker = Benchmarker<ConvBias>(single_thread_handle.get());
- benchmarker.set_times(RUNS)
- .set_display(false)
- .set_dtype(0, dtype_v[0])
- .set_dtype(1, dtype_v[1])
- .set_dtype(2, dtype_v[2])
- .set_dtype(4, dtype_v[3])
- .set_param(param)
- .set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(
- algo_name.c_str()));
- for (auto shape : shapes_and_computation) {
- single_thread_times.push_back(benchmarker.exec(shape.first) / RUNS);
- }
- }
- printf("Benchmark : Multi threads %zu, ", multi_thread_config.nr_thread);
- printf("core_ids:");
- for (size_t i = 0; i < multi_thread_config.affinity_core_set.size(); i++) {
- printf("%zu ", multi_thread_config.affinity_core_set[i]);
- }
- printf(", Single thread core_id %zu\n",
- single_thread_config.affinity_core_set[0]);
- for (size_t i = 0; i < shapes_and_computation.size(); i++) {
- auto shapes = shapes_and_computation[i];
- printf("Bench case: ");
- for (auto&& shape : shapes.first) {
- printf("%s ", shape.to_string().c_str());
- }
- float computations = shapes.second;
- printf("%zu threads gflops: %f,\n single thread gflops: "
- "%f. spead up = %f, speedup/cores=%f\n",
- multi_thread_config.nr_thread,
- computations / multi_thread_times[i],
- computations / single_thread_times[i],
- single_thread_times[i] / multi_thread_times[i],
- single_thread_times[i] / multi_thread_times[i] /
- multi_thread_config.nr_thread);
- }
- }
-
- void benchmark_impl_comp(const param::ConvBias param,
- std::vector<std::pair<SmallVector<TensorShape>, float>>&
- shapes_and_computation,
- const std::string algo_name, const std::string algo_name1,size_t RUNS,
- TaskExecutorConfig&& multi_thread_config,
- TaskExecutorConfig&& single_thread_config,std::vector<DType> dtype_v) {
-
- std::vector<DType> data_type = {dtype::Float32(), dtype::Float32(),
- dtype::Float32(), dtype::Float32()};
-
-
- std::vector<float> multi_thread_times, single_thread_times;
- {
- auto multi_thread_hanle =
- create_cpu_handle(0, true, &multi_thread_config);
- auto benchmarker = Benchmarker<ConvBias>(multi_thread_hanle.get());
- benchmarker.set_times(RUNS)
- .set_display(false)
- .set_dtype(0,dtype_v[0])
- .set_dtype(1,dtype_v[1])
- .set_dtype(2,dtype_v[2])
- .set_dtype(4,dtype_v[3])
- .set_param(param)
- .set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(
- algo_name.c_str()));
- for (auto shape : shapes_and_computation) {
- multi_thread_times.push_back(benchmarker.exec(shape.first) / RUNS);
- }
- }
- {
- auto single_thread_handle =
- create_cpu_handle(0, true, &single_thread_config);
- auto benchmarker = Benchmarker<ConvBias>(single_thread_handle.get());
- benchmarker.set_times(RUNS)
- .set_display(false)
- .set_dtype(0,dtype_v[0])
- .set_dtype(1,dtype_v[1])
- .set_dtype(2,dtype_v[2])
- .set_dtype(4,dtype_v[3])
- .set_param(param)
- .set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(
- algo_name1.c_str()));
- for (auto shape : shapes_and_computation) {
- single_thread_times.push_back(benchmarker.exec(shape.first) / RUNS);
- }
- }
- printf("Benchmark : Multi threads %zu, ", multi_thread_config.nr_thread);
- printf("core_ids:");
- for (size_t i = 0; i < multi_thread_config.affinity_core_set.size(); i++) {
- printf("%zu ", multi_thread_config.affinity_core_set[i]);
- }
- for (size_t i = 0; i < shapes_and_computation.size(); i++) {
- auto shapes = shapes_and_computation[i];
- printf("Bench case: ");
- for (auto&& shape : shapes.first) {
- printf("%s ", shape.to_string().c_str());
- }
- float computations = shapes.second;
- printf("algo:%s gflops: %f,\n algo:%s gflops: "
- "%f. spead up = %f\n",
- algo_name.c_str(), computations / multi_thread_times[i],
- algo_name1.c_str(), computations / single_thread_times[i],
- single_thread_times[i] / multi_thread_times[i]);
- }
- }
-
- } // namespace
- TEST_F(X86_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_DIRECT_AVX2_INT8) {
- constexpr size_t RUNS = 50;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::DENSE;
-
- std::vector<DType> data_type = {dtype::Int8(), dtype::Int8(),
- dtype::Int32(), dtype::Int32()};
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS) {
- param.pad_h = FS / 2;
- param.pad_w = FS / 2;
-
- SmallVector<TensorShape> shapes{
- {N, IC, H, W}, {OC, IC, FS, FS}, {}, {}, {}};
- TensorShape dst{N, OC, (H + 2 * param.pad_h - FS) + 1,
- (W + 2 * param.pad_w - FS) + 1};
- float computations = (IC * FS * FS * dst.total_nr_elems() * 2) * 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 7);
- bench_case(1, 32, 64, 200, 200, 7);
- bench_case(1, 32, 32, 128, 128, 7);
- bench_case(1, 32, 64, 128, 128, 7);
- bench_case(1, 32, 32, 100, 100, 7);
- bench_case(1, 32, 64, 100, 100, 7);
- bench_case(1, 32, 32, 80, 80, 7);
- bench_case(1, 32, 64, 80, 80, 7);
-
- bench_case(1, 32, 32, 200, 200, 5);
- bench_case(1, 32, 64, 200, 200, 5);
- bench_case(1, 32, 32, 128, 128, 5);
- bench_case(1, 32, 64, 128, 128, 5);
- bench_case(1, 32, 32, 100, 100, 5);
- bench_case(1, 32, 64, 100, 100, 5);
- bench_case(1, 32, 32, 80, 80, 5);
- bench_case(1, 32, 64, 80, 80, 5);
-
- bench_case(1, 32, 32, 200, 200, 3);
- bench_case(1, 32, 64, 200, 200, 3);
- bench_case(1, 32, 32, 128, 128, 3);
- bench_case(1, 32, 64, 128, 128, 3);
- bench_case(1, 32, 32, 100, 100, 3);
- bench_case(1, 32, 64, 100, 100, 3);
- bench_case(1, 32, 32, 80, 80, 3);
- bench_case(1, 32, 64, 80, 80, 3);
-
- bench_case(1, 32, 32, 200, 200, 2);
- bench_case(1, 32, 64, 200, 200, 2);
- bench_case(1, 32, 32, 128, 128, 2);
- bench_case(1, 32, 64, 128, 128, 2);
- bench_case(1, 32, 32, 100, 100, 2);
- bench_case(1, 32, 64, 100, 100, 2);
- bench_case(1, 32, 32, 80, 80, 2);
- bench_case(1, 32, 64, 80, 80, 2);
-
- std::string algo_name = "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE1";
- printf("Benchmark X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE1 algo\n");
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
- }
-
- TEST_F(X86_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CONVBIAS_DIRECT_AVX2_INT8_STRIDE2) {
- constexpr size_t RUNS = 50;
- param::ConvBias param;
- param.stride_h = 2;
- param.stride_w = 2;
- param.sparse = param::ConvBias::Sparse::DENSE;
-
- std::vector<DType> data_type = {dtype::Int8(), dtype::Int8(),
- dtype::Int32(), dtype::Int32()};
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS) {
- param.pad_h = FS / 2;
- param.pad_w = FS / 2;
-
- SmallVector<TensorShape> shapes{
- {N, IC, H, W}, {OC, IC, FS, FS}, {}, {}, {}};
- TensorShape dst{N, OC, (H + 2 * param.pad_h - FS) / param.stride_h + 1,
- (W + 2 * param.pad_w - FS) / param.pad_w + 1};
- float computations = (IC * FS * FS * dst.total_nr_elems() * 2) * 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 7);
- bench_case(1, 32, 64, 200, 200, 7);
- bench_case(1, 32, 32, 128, 128, 7);
- bench_case(1, 32, 64, 128, 128, 7);
- bench_case(1, 32, 32, 100, 100, 7);
- bench_case(1, 32, 64, 100, 100, 7);
- bench_case(1, 32, 32, 80, 80, 7);
- bench_case(1, 32, 64, 80, 80, 7);
-
- bench_case(1, 32, 32, 200, 200, 5);
- bench_case(1, 32, 64, 200, 200, 5);
- bench_case(1, 32, 32, 128, 128, 5);
- bench_case(1, 32, 64, 128, 128, 5);
- bench_case(1, 32, 32, 100, 100, 5);
- bench_case(1, 32, 64, 100, 100, 5);
- bench_case(1, 32, 32, 80, 80, 5);
- bench_case(1, 32, 64, 80, 80, 5);
-
- bench_case(1, 32, 32, 200, 200, 3);
- bench_case(1, 32, 64, 200, 200, 3);
- bench_case(1, 32, 32, 128, 128, 3);
- bench_case(1, 32, 64, 128, 128, 3);
- bench_case(1, 32, 32, 100, 100, 3);
- bench_case(1, 32, 64, 100, 100, 3);
- bench_case(1, 32, 32, 80, 80, 3);
- bench_case(1, 32, 64, 80, 80, 3);
-
- bench_case(1, 32, 32, 200, 200, 2);
- bench_case(1, 32, 64, 200, 200, 2);
- bench_case(1, 32, 32, 128, 128, 2);
- bench_case(1, 32, 64, 128, 128, 2);
- bench_case(1, 32, 32, 100, 100, 2);
- bench_case(1, 32, 64, 100, 100, 2);
- bench_case(1, 32, 32, 80, 80, 2);
- bench_case(1, 32, 64, 80, 80, 2);
-
- std::string algo_name = "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE2";
- printf("Benchmark X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE2 algo\n");
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
- }
-
- TEST_F(X86_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_DIRECTF32) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<DType> data_type = {dtype::Float32(), dtype::Float32(),
- dtype::Float32(), dtype::Float32()};
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group) {
- SmallVector<TensorShape> shapes{{N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, H, W}};
- TensorShape dst{N, OC, H, W};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4);
- bench_case(1, 32, 32, 200, 200, 3, 32);
- bench_case(1, 32, 32, 128, 128, 3, 4);
- bench_case(1, 32, 32, 128, 128, 3, 32);
- bench_case(1, 32, 32, 100, 100, 3, 4);
- bench_case(1, 32, 32, 100, 100, 3, 32);
- bench_case(1, 32, 32, 80, 80, 3, 4);
- bench_case(1, 32, 32, 80, 80, 3, 32);
-
- std::string algo_name = "X86_CONV_BIAS_DIRECT_STRIDE1_LARGE_GROUP";
- printf("Benchmark X86_CONV_BIAS_DIRECT_STRIDE1_LARGE_GROUP algo\n");
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
-
- algo_name = "X86_CONV_BIAS_DIRECT_STRIDE1_SMALL_GROUP";
- printf("Benchmark X86_CONV_BIAS_DIRECT_STRIDE1_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- }
-
- TEST_F(X86_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_IM2COL_F32) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
-
- std::vector<DType> data_type = {dtype::Float32(), dtype::Float32(),
- dtype::Float32(), dtype::Float32()};
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group) {
- SmallVector<TensorShape> shapes{{N, IC, H, W},
- {OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, H, W}};
- TensorShape dst{N, OC, H, W};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
-
- bench_case(1, 64, 32, 7, 7, 3, 1);
- bench_case(1, 64, 64, 7, 7, 3, 1);
- bench_case(1, 64, 128, 7, 7, 3, 1);
- bench_case(1, 64, 256, 7, 7, 3, 1);
- bench_case(1, 64, 512, 7, 7, 3, 1);
- bench_case(1, 64, 1024, 7, 7, 3, 1);
-
- bench_case(1, 64, 32, 14, 14, 3, 1);
- bench_case(1, 64, 64, 14, 14, 3, 1);
- bench_case(1, 64, 128, 14, 14, 3, 1);
- bench_case(1, 64, 256, 14, 14, 3, 1);
- bench_case(1, 64, 512, 14, 14, 3, 1);
-
- bench_case(1, 64, 1024, 14, 14, 3, 1);
- bench_case(1, 128, 128, 14, 14, 3, 1);
- bench_case(1, 128, 256, 14, 14, 3, 1);
- bench_case(1, 512, 512, 14, 14, 3, 1);
- bench_case(1, 256, 512, 14, 14, 3, 1);
- bench_case(1, 512, 1024, 14, 14, 3, 1);
- bench_case(1, 1024, 1024, 14, 14, 3, 1);
-
- std::string algo_name = "IM2COLMATMUL:X86_F32_BLAS:192";
- printf("Benchmark IM2COLMATMUL:X86_F32_BLAS algo\n");
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
- }
-
- TEST_F(X86_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_IM2COL_F32_single_thread) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
-
- std::vector<DType> data_type = {dtype::Float32(), dtype::Float32(),
- dtype::Float32(), dtype::Float32()};
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H,
- size_t W, size_t FS,
- size_t group) {
- SmallVector<TensorShape> shapes{{N, IC, H, W},
- {OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, H, W}};
- TensorShape dst{N, OC, H, W};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
-
- bench_case(1, 64, 32, 7, 7, 3, 1);
- bench_case(1, 64, 64, 7, 7, 3, 1);
- bench_case(1, 64, 128, 7, 7, 3, 1);
- bench_case(1, 64, 256, 7, 7, 3, 1);
- bench_case(1, 64, 512, 7, 7, 3, 1);
- bench_case(1, 64, 1024, 7, 7, 3, 1);
-
- bench_case(1, 64, 32, 14, 14, 3, 1);
- bench_case(1, 64, 64, 14, 14, 3, 1);
- bench_case(1, 64, 128, 14, 14, 3, 1);
- bench_case(1, 64, 256, 14, 14, 3, 1);
- bench_case(1, 64, 512, 14, 14, 3, 1);
-
- bench_case(1, 64, 1024, 14, 14, 3, 1);
- bench_case(1, 128, 128, 14, 14, 3, 1);
- bench_case(1, 128, 256, 14, 14, 3, 1);
- bench_case(1, 512, 512, 14, 14, 3, 1);
- bench_case(1, 256, 512, 14, 14, 3, 1);
- bench_case(1, 512, 1024, 14, 14, 3, 1);
- bench_case(1, 1024, 1024, 14, 14, 3, 1);
-
- std::string algo_name = "IM2COLMATMUL:X86_F32_MKL_PACKA:192";
- std::string algo_name1 = "IM2COLMATMUL:X86_F32_BLAS:192";
- printf("Benchmark IM2COLMATMUL:X86_F32_BLAS algo\n");
- benchmark_impl_comp(param, shapes_and_computation, algo_name,algo_name1, RUNS,
- {1, {4}}, {1, {4}},data_type);
- benchmark_impl_comp(param, shapes_and_computation, algo_name,algo_name1, RUNS,
- {1, {7}}, {1, {7}},data_type);
- shapes_and_computation.clear();
- }
-
- TEST_F(X86_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_IM2COL_INT8X8X32) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group) {
- SmallVector<TensorShape> shapes{{N, IC, H, W},
- {OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, H, W}};
- TensorShape dst{N, OC, H, W};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
-
- bench_case(1, 64, 32, 7, 7, 3, 1);
- bench_case(1, 64, 64, 7, 7, 3, 1);
- bench_case(1, 64, 128, 7, 7, 3, 1);
- bench_case(1, 64, 256, 7, 7, 3, 1);
- bench_case(1, 64, 512, 7, 7, 3, 1);
- bench_case(1, 64, 1024, 7, 7, 3, 1);
-
- bench_case(1, 64, 32, 14, 14, 3, 1);
- bench_case(1, 64, 64, 14, 14, 3, 1);
- bench_case(1, 64, 128, 14, 14, 3, 1);
- bench_case(1, 64, 256, 14, 14, 3, 1);
- bench_case(1, 64, 512, 14, 14, 3, 1);
-
- bench_case(1, 64, 1024, 14, 14, 3, 1);
- bench_case(1, 128, 128, 14, 14, 3, 1);
- bench_case(1, 128, 256, 14, 14, 3, 1);
- bench_case(1, 512, 512, 14, 14, 3, 1);
- bench_case(1, 256, 512, 14, 14, 3, 1);
- bench_case(1, 512, 1024, 14, 14, 3, 1);
- bench_case(1, 1024, 1024, 14, 14, 3, 1);
-
- std::vector<DType> data_type = {dtype::Int8(), dtype::Int8(),
- dtype::Int32(), dtype::Int32()};
- std::string algo_name = "IM2COLMATMUL:X86_INT8X8X32_AVX2_4X16X2";
- // std::string algo_name = "IM2COLMATMUL:X86_INT8X8X32_AVX2_2X4X16";
- // printf("Benchmark IM2COLMATMUL:X86_INT8X8X32_AVX2_4X16X2 algo\n");
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
- }
-
- namespace{
- std::vector<conv_bias::TestArg> get_winograd_benchmark_args(size_t kernel,
- size_t pack_size) {
- std::vector<conv_bias::TestArg> args;
- auto pack = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p) {
- if (ic % pack_size != 0 || oc % pack_size != 0)
- return;
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
-
- param::ConvBias param;
- param.mode = param::ConvBias::Mode::CROSS_CORRELATION;
- param.format = param::ConvBias::Format::NCHW88;
- param.sparse = param::ConvBias::Sparse::DENSE;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
-
- args.push_back(conv_bias::TestArg{param,
- TensorShape{1, ic/8, h, w, 8},
- TensorShape{oc/8, ic/8, kernel, kernel, 8, 8},
- {1, oc/8, 1, 1, 8}});
-
- };
- for (size_t ic : {64, 128, 256}) {
- for (size_t oc : {64,128,256}) {
- pack(oc, ic, 56, 56, kernel, kernel / 2);
- pack(oc, ic, 14, 14, kernel, kernel / 2);
- pack(oc, ic, 28, 28, kernel, kernel / 2);
- }
- }
-
- //! conv in vgg16
- pack(512, 512, 15, 15, kernel, kernel / 2);
- pack(512, 256, 15, 15, kernel, kernel / 2);
- pack(256, 256, 29, 29, kernel, kernel / 2);
- pack(256, 128, 29, 29, kernel, kernel / 2);
- pack(128, 128, 57, 57, kernel, kernel / 2);
- pack(128, 64, 57, 57, kernel, kernel / 2);
- pack(64, 64, 56, 56, kernel, kernel / 2);
- pack(128, 128, 28, 28, kernel, kernel / 2);
- pack(512, 512, 14, 14, kernel, kernel / 2);
- return args;
- }
-
- void benchmark_winograd(const char* algo_name, Handle* handle,
- size_t kernel, size_t pack_size) {
- auto&& args = get_winograd_benchmark_args(kernel, pack_size);
- using namespace conv_bias;
- constexpr size_t RUN = 10;
- Benchmarker<ConvBias> benchmark(handle);
- benchmark.set_display(false);
- benchmark.set_times(RUN);
-
- Benchmarker<ConvBias> benchmark_winograd(handle);
- benchmark_winograd.set_display(false);
- benchmark_winograd.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout({arg.src, dtype::Float32()},
- {arg.filter, dtype::Float32()},
- {arg.bias, dtype::Float32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 * 8.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used = benchmark.set_param(arg.param).exec(
- {arg.src, arg.filter, {}, {}, {}}) /
- RUN;
-
- benchmark_winograd.set_param(arg.param);
- auto used_winograd =
- algo_benchmark<ConvBias>(benchmark_winograd,
- {arg.src, arg.filter, {}, {}, {}},
- algo_name) /
- RUN;
-
- printf("%s %s: normal: %f ms %f Gflops winograd: %f ms %f GFlops "
- "speedup: "
- "%f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(),
- used, computations / used, used_winograd,
- computations / used_winograd, used / used_winograd);
- }
- }
- }
-
- TEST_F(X86, BENCHMARK_CONVBIAS_WINOGRAD_F63_8x8) {
- benchmark_winograd("WINOGRAD:X86_F32MK8_8X8:8:6:8", handle(), 3, 8);
- }
-
- TEST_F(X86, BENCHMARK_CONVBIAS_WINOGRAD_F23_8x8) {
- benchmark_winograd("WINOGRAD:X86_F32MK8_8X8:8:2:8", handle(), 3, 8);
- }
-
- #endif
-
- } // namespace test
- } // namespace megdnn
-
- // vim: syntax=cpp.doxygen
|