|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152 |
- /**
- * \file dnn/test/armv7/convolution.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- */
- #include "test/armv7/fixture.h"
-
- #include "test/common/convolution.h"
- #include "test/common/checker.h"
- #include "test/common/benchmarker.h"
-
- #include "test/common/rng.h"
-
- using namespace megdnn;
- using namespace test;
-
- #if MEGDNN_WITH_BENCHMARK
- TEST_F(ARMV7, BENCHMARK_CONVOLUTION_STRIDE2)
- {
- using Param = param::Convolution;
- auto run = [&](const TensorShapeArray& shapes, Param param) {
- Benchmarker<Convolution> benchmarker_float(handle());
- size_t RUN = 100;
- auto tfloat = benchmarker_float.set_display(false)
- .set_times(RUN)
- .set_param(param)
- .exec(shapes);
- size_t IC = shapes[1][1];
- size_t FH = shapes[1][2];
- size_t FW = shapes[1][3];
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<Convolution>();
- opr->param() = param;
- opr->deduce_layout({shapes[0], dtype::Float32()},
- {shapes[1], dtype::Float32()}, dst_layout);
- printf("flops: %.3f mflops\n",
- (IC * dst_layout.total_nr_elems() * FH * FW * 2) /
- (tfloat / RUN * 1000));
- };
-
- auto profile = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t stride) {
- Param param;
- param.stride_h = stride;
- param.stride_w = stride;
- param.pad_h = kernel / 2;
- param.pad_w = kernel / 2;
- printf("oc: %zd ic: %zd w: %zd h: %zd stride: %zd kernel_size: %zd\n",
- oc, ic, w, h, stride, kernel);
-
- run({{1, ic, h, w}, {oc, ic, kernel, kernel}, {}},
- param);
-
- };
-
- for (size_t kernel : {2, 3, 5, 7}) {
- for (size_t ic : {3, 6, 12, 24}) {
- for (size_t oc : {3, 6, 12, 24}) {
- for (size_t size : {4, 7, 8, 14, 16, 17, 28, 32, 34, 64, 112}) {
- profile(oc, ic, size, size, kernel, 2);
- }
- }
- }
- }
- }
- #endif
-
- TEST_F(ARMV7, BENCHMARK_CONVOLUTION_1X1)
- {
- int exec_times = 50;
- Benchmarker<MatrixMul> benchmarker_gemm(handle());
- benchmarker_gemm.set_times(exec_times);
-
- Benchmarker<Convolution> benchmarker(handle());
- benchmarker.set_times(exec_times);
-
- float mod = 1000 * exec_times / 1e9;
- auto run = [&](size_t IC, size_t OC, size_t H, size_t W) {
- float time = 1.f, perf = 1.f;
-
- std::cout<<std::endl;
- std::cout<< "CONV: IC " << IC << ", OC " << OC <<
- ", H " << H << ", W " << W <<std::endl;
- time = benchmarker.exec({{1, IC, H, W}, {OC, IC, 1, 1}, {1, OC, H, W}});
- perf = OC * (2 * H * W - 1) * IC / time * mod;
- std::cout<<"Performance is " << perf <<" Gflops" <<std::endl;
-
- std::cout<<"GEMM: (" << OC <<", "<< H*W << ", " <<IC <<")"<<std::endl;
- //time = benchmarker_gemm.exec({{OC, H*W}, {H*W, IC}, {}});
- //perf = OC * (2 * H * W - 1) * IC / time * mod;
- time = benchmarker_gemm.exec({{OC, IC}, {IC, H*W}, {}});
- perf = OC * (2 * IC -1) * H * W / time * mod;
- std::cout<<"Performance is " << perf <<" Gflops" <<std::endl;
-
- };
-
- //run(32, 32, 64, 64);
- //run(8, 8, 32, 32);
- //run(32, 32, 128, 128);
- //run(32, 32, 512, 512);
- //run(10,10,2,5);
- //run(100,100,2,50);
-
- run(16,4,240,135);
- run(8,32,120,67);
- run(16,64,60,33);
-
- run(1,1,28,28);
- run(8,1,28,28);
- run(2,2,28,28);
- run(8,2,28,28);
- run(4,4,28,28);
- run(16,4,28,28);
- }
-
- TEST_F(ARMV7, BENCHMARK_GROUP_CONVOLUTION_1X1) {
- int exec_times = 50;
- Benchmarker<Convolution> benchmarker_gconv1x1(handle());
- benchmarker_gconv1x1.set_times(exec_times);
-
- float mod = 1000 * exec_times / 1e9;
- auto run = [&](size_t IC, size_t OC, size_t H, size_t W, size_t group){
- float time = 1.f, perf = 1.f;
-
- std::cout<<std::endl;
- std::cout<< "GCONV: IC " << IC << ", OC " << OC <<
- ", H " << H << ", W " << W <<", GROUP "<<group << std::endl;
-
- auto ICg = IC / group;
- auto OCg = OC / group;
- param::Convolution param;
- param.sparse = param::Convolution::Sparse::GROUP;
- time = benchmarker_gconv1x1.set_param(param).exec({{1, IC, H, W},
- {group, OCg, ICg, 1, 1},{}});
- perf = group * OCg * ICg * H * W / time * mod;
- std::cout<<"Performance is " << perf <<" Gflops" <<std::endl;
- };
- run(8*4, 1*4, 28, 28, 4);
- run(2*4, 2*4, 28, 28, 4);
- run(8*4, 2*4, 28, 28, 4);
- run(4*4, 4*4, 28, 28, 4);
- run(16*4, 4*4, 28, 28, 4);
-
- }
-
-
- // vim: syntax=cpp.doxygen
|