You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

checker.cpp 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428
  1. /**
  2. * \file dnn/test/common/checker.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "./checker.h"
  12. #include "megdnn/tensor_iter.h"
  13. #include "megdnn/tensor_format.h"
  14. #include "test/common/tensor.h"
  15. #include "test/common/timer.h"
  16. using namespace megdnn;
  17. using namespace test;
  18. namespace {
  19. template<typename ctype, class Iter>
  20. ::testing::AssertionResult assert_tensor_eq_with_iter(
  21. const char *expr0, const char *expr1,
  22. Iter it0, Iter it1, const TensorLayout &layout,
  23. float maxerr, float maxerr_avg, float maxerr_avg_biased) {
  24. auto nr_elem = layout.total_nr_elems();
  25. double error_sum = 0;
  26. double error_sum_biased = 0;
  27. for (size_t i = 0; i < nr_elem; ++ i) {
  28. ctype iv0 = *it0, iv1 = *it1;
  29. float err = diff(iv0, iv1);
  30. error_sum += std::abs(err);
  31. error_sum_biased += err;
  32. if (!good_float(iv0) || !good_float(iv1) ||
  33. std::abs(err) > maxerr) {
  34. Index index(layout, i);
  35. return ::testing::AssertionFailure()
  36. << "Unequal value\n"
  37. << "Value of: " << expr1 << "\n"
  38. << " Actual: " << (iv1 + 0) << "\n"
  39. << "Expected: " << expr0 << "\n"
  40. << "Which is: " << (iv0 + 0) << "\n"
  41. << "At index: " << index.to_string() << "/"
  42. << layout.TensorShape::to_string() << "\n"
  43. << " DType: " << layout.dtype.name() << "\n"
  44. << " error: " << std::abs(err) << "/" << maxerr;
  45. }
  46. ++ it0;
  47. ++ it1;
  48. }
  49. float error_avg = error_sum / nr_elem;
  50. if (error_avg > maxerr_avg) {
  51. return ::testing::AssertionFailure()
  52. << "Average error exceeds the upper limit\n"
  53. << "Value of: " << expr1 << "\n"
  54. << "Expected: " << expr0 << "\n"
  55. << "Average error: " << error_avg << "/" << maxerr_avg
  56. << "\n"
  57. << "Num of elements: " << nr_elem;
  58. }
  59. float error_avg_biased = error_sum_biased / nr_elem;
  60. if (std::abs(error_avg_biased) > maxerr_avg_biased) {
  61. return ::testing::AssertionFailure()
  62. << "Average biased error exceeds the upper limit\n"
  63. << "Value of: " << expr1 << "\n"
  64. << "Expected: " << expr0 << "\n"
  65. << "Average biased error: " << error_avg_biased << "/"
  66. << maxerr_avg_biased << "\n"
  67. << "Num of elements: " << nr_elem;
  68. }
  69. return ::testing::AssertionSuccess();
  70. }
  71. template<typename ctype>
  72. ::testing::AssertionResult assert_tensor_eq_with_dtype(
  73. const char *expr0, const char *expr1,
  74. const TensorND &v0, const TensorND &v1,
  75. float maxerr, float maxerr_avg, float maxerr_avg_biased) {
  76. if (!std::is_same<ctype, dt_qint4>::value &&
  77. !std::is_same<ctype, dt_quint4>::value) {
  78. if (v0.layout.is_physical_contiguous() &&
  79. v1.layout.is_physical_contiguous()) {
  80. return assert_tensor_eq_with_iter<ctype>(
  81. expr0, expr1, v0.ptr<ctype>(), v1.ptr<ctype>(),
  82. v0.layout, maxerr, maxerr_avg, maxerr_avg_biased);
  83. }
  84. }
  85. auto it0 = megdnn::tensor_iter_valonly<ctype>(v0).begin(),
  86. it1 = megdnn::tensor_iter_valonly<ctype>(v1).begin();
  87. return assert_tensor_eq_with_iter<ctype>(expr0, expr1, it0, it1,
  88. v0.layout, maxerr, maxerr_avg,
  89. maxerr_avg_biased);
  90. }
  91. template<class Impl>
  92. void memcpy_noncontig(
  93. void *dst, const void *src, const TensorLayout &layout,
  94. const Impl& impl) {
  95. auto span = layout.span();
  96. dst = static_cast<dt_byte*>(dst) + span.low_byte;
  97. src = static_cast<const dt_byte*>(src) + span.low_byte;
  98. impl(dst, src, span.dist_byte());
  99. }
  100. template <typename Impl>
  101. void copy_tensors(const CheckerHelper::TensorValueArray& dest,
  102. const CheckerHelper::TensorValueArray& src,
  103. const Impl& copy_impl) {
  104. megdnn_assert(dest.size() == src.size());
  105. for (size_t i = 0; i < src.size(); i++) {
  106. auto&& tensor = src[i];
  107. if (tensor.layout.ndim == 0)
  108. continue;
  109. memcpy_noncontig(dest[i].raw_ptr, tensor.raw_ptr, tensor.layout,
  110. copy_impl);
  111. }
  112. }
  113. void copy_tensors(const CheckerHelper::TensorValueArray& dest,
  114. const CheckerHelper::TensorValueArray& src) {
  115. copy_tensors(dest, src, memcpy);
  116. }
  117. } // anonymous namespace
  118. ::testing::AssertionResult test::__assert_tensor_eq(
  119. const char *expr0, const char *expr1, const char * /*expr_maxerr*/,
  120. const char* /*expr_maxerr_avg*/,
  121. const char* /*expr_maxerr_avg*/,
  122. const TensorND &v0, const TensorND &v1,
  123. float maxerr, float maxerr_avg, float maxerr_avg_biased) {
  124. if (!v0.layout.eq_shape(v1.layout)) {
  125. return ::testing::AssertionFailure()
  126. << "Shape mismatch\n"
  127. << "Value of: " << expr1 << "\n"
  128. << " Actual: " << v1.layout.TensorShape::to_string() << "\n"
  129. << "Expected: " << expr0 << "\n"
  130. << "Which is: " << v0.layout.TensorShape::to_string() << "\n";
  131. }
  132. auto dtype = v0.layout.dtype;
  133. if (dtype != v1.layout.dtype) {
  134. return ::testing::AssertionFailure()
  135. << "Data type mismatch\n"
  136. << "Value of: " << expr1 << "\n"
  137. << " Actual: " << v1.layout.dtype.name() << "\n"
  138. << "Expected: " << expr0 << "\n"
  139. << "Which is: " << v0.layout.dtype.name() << "\n";
  140. }
  141. switch(dtype.enumv()) {
  142. #define cb(_dt) \
  143. case DTypeTrait<_dt>::enumv: \
  144. return assert_tensor_eq_with_dtype<DTypeTrait<_dt>::ctype>( \
  145. expr0, expr1, v0, v1, maxerr, maxerr_avg, maxerr_avg_biased);
  146. MEGDNN_FOREACH_COMPUTING_DTYPE(cb)
  147. MEGDNN_FOREACH_QUANTIZED_DTYPE(cb)
  148. //! In order to avoid an unnecessary increase in binary size, we just
  149. //! use QuantizedS16 dtype in winograd_filter_preprocess now.
  150. cb(::megdnn::dtype::QuantizedS16)
  151. MEGDNN_FOREACH_QUANTIZED_LOWBIT_DTYPE(cb)
  152. #undef cb
  153. default:
  154. megdnn_trap();
  155. }
  156. }
  157. CheckerHelper::CheckerHelper(Handle *handle, bool check_dispatch):
  158. m_handle_cur(handle),
  159. m_default_rng(new NormalRNG())
  160. {
  161. //! set MGB_NO_NAIVE_CHECK=1 to close megdnn test check with naive
  162. const char* env_p = std::getenv("MGB_NO_NAIVE_CHECK");
  163. if (env_p) {
  164. int no_naive_flag = atoi(env_p);
  165. m_no_naive_and_check = no_naive_flag > 0 ? true : false;
  166. check_dispatch = false;
  167. } else {
  168. m_no_naive_and_check = false;
  169. }
  170. auto tmp_handle = create_cpu_handle(2, check_dispatch);
  171. m_handle_naive = std::move(tmp_handle);
  172. }
  173. CheckerHelper::~CheckerHelper() noexcept = default;
  174. void CheckerHelper::do_exec_with_testcases(const TensorValueArray& testcase_in,
  175. const TensorValueArray& testcase_out,
  176. const OprExec& exec_opr) {
  177. m_prev_succ = false;
  178. // Validate layouts of tensors in testcase_in and testcase_out.
  179. // It must be possible to aggregate the layouts of inputs and outputs.
  180. TensorLayoutArray layouts;
  181. for (size_t i = 0; i < testcase_in.size(); i++) {
  182. // ndim == 0 means does not apply.
  183. ASSERT_TRUE(testcase_in[i].layout.ndim == 0 ||
  184. testcase_out[i].layout.ndim == 0 ||
  185. testcase_in[i].layout.eq_layout(testcase_out[i].layout));
  186. layouts.emplace_back(testcase_in[i].layout.ndim > 0
  187. ? testcase_in[i].layout
  188. : testcase_out[i].layout);
  189. }
  190. auto tensors_cur_storage = alloc_tensors(m_handle_cur, layouts, m_offset);
  191. auto tensors_cur_host_storage =
  192. alloc_tensors(m_handle_naive.get(), layouts, m_offset);
  193. auto &&tensors_cur = *tensors_cur_storage;
  194. auto &&tensors_cur_host = *tensors_cur_host_storage;
  195. copy_tensors_to_device(tensors_cur, testcase_in);
  196. exec_opr(tensors_cur);
  197. if (m_expect_exec_fail) {
  198. m_expect_exec_fail();
  199. m_expect_exec_fail = {};
  200. return;
  201. }
  202. copy_tensors_from_device(tensors_cur_host, tensors_cur);
  203. check_tensors(testcase_out, tensors_cur_host);
  204. m_prev_succ = !::testing::Test::HasFailure();
  205. }
  206. void CheckerHelper::do_exec(const TensorLayoutArray &user_layouts,
  207. const TensorLayoutArray &deduced_layouts,
  208. const OprExec &exec_naive, const OprExec &exec_opr) {
  209. m_prev_succ = false;
  210. // check if user provided layouts are correct
  211. for (size_t i = 0; i < deduced_layouts.size(); ++i) {
  212. if (user_layouts[i].ndim > 0) {
  213. ASSERT_TRUE(deduced_layouts[i].eq_shape(user_layouts[i]))
  214. << "User provided shape is "
  215. << user_layouts[i].TensorShape::to_string()
  216. << "\nExpected shape is "
  217. << deduced_layouts[i].TensorShape::to_string();
  218. }
  219. }
  220. auto layouts = user_layouts;
  221. for (size_t i = 0; i < layouts.size(); ++i) {
  222. if (layouts[i].ndim == 0) {
  223. //! in some opr, such as conv_bias has ndim==0
  224. layouts[i] = deduced_layouts[i];
  225. }
  226. }
  227. // allocate
  228. m_tensors_naive = alloc_tensors(m_handle_naive.get(), layouts, m_offset);
  229. auto tensors_cur_storage = alloc_tensors(m_handle_cur, layouts, m_offset);
  230. auto tensors_cur_host_storage =
  231. alloc_tensors(m_handle_naive.get(), layouts, m_offset);
  232. auto &&tensors_naive = *m_tensors_naive;
  233. auto &&tensors_cur = *tensors_cur_storage;
  234. auto &&tensors_cur_host = *tensors_cur_host_storage;
  235. std::shared_ptr<TensorValueArray> tensors_extra_opr_impl;
  236. if (m_extra_opr_impl) {
  237. tensors_extra_opr_impl =
  238. alloc_tensors(m_handle_naive.get(), layouts, m_offset);
  239. }
  240. init_naive_values();
  241. copy_tensors_to_device(tensors_cur, tensors_naive);
  242. if (m_extra_opr_impl) {
  243. copy_tensors(*tensors_extra_opr_impl, tensors_naive);
  244. }
  245. // execute
  246. exec_opr(tensors_cur);
  247. if (m_expect_exec_fail) {
  248. m_expect_exec_fail();
  249. m_expect_exec_fail = {};
  250. return;
  251. }
  252. if (m_stable_check) {
  253. auto tensors_bak_host_storage =
  254. alloc_tensors(m_handle_naive.get(), layouts, m_offset);
  255. auto&& tensors_bak_host = *tensors_bak_host_storage;
  256. copy_tensors_from_device(tensors_bak_host, tensors_cur);
  257. for (int i = 0; i < 10; i++) {
  258. exec_opr(tensors_cur);
  259. copy_tensors_from_device(tensors_cur_host, tensors_cur);
  260. check_tensors(tensors_bak_host, tensors_cur_host);
  261. }
  262. }
  263. if (m_no_naive_and_check) {
  264. m_prev_succ = !::testing::Test::HasFailure();
  265. return;
  266. }
  267. exec_naive(tensors_naive);
  268. if (m_extra_opr_impl) {
  269. m_extra_opr_impl(*tensors_extra_opr_impl);
  270. }
  271. // see if we need performance regression test
  272. if (m_perf_check) {
  273. ASSERT_GT(m_perf_check_threshold, 0) << "perf_check_threshold should be "
  274. "set ahead of time.";
  275. Timer timer_naive, timer_cur;
  276. megdnn_sync(m_handle_naive.get());
  277. timer_naive.start();
  278. exec_naive(tensors_naive);
  279. megdnn_sync(m_handle_naive.get());
  280. timer_naive.stop();
  281. megdnn_sync(m_handle_cur);
  282. timer_cur.start();
  283. exec_opr(tensors_cur);
  284. megdnn_sync(m_handle_cur);
  285. timer_cur.stop();
  286. size_t time_in_us_naive = timer_naive.get_time_in_us(),
  287. time_in_us_cur = timer_cur.get_time_in_us();
  288. EXPECT_GE(time_in_us_naive, static_cast<size_t>(100))
  289. << "Running time smaller than 100us "
  290. << "might be imprecise. naive_time="
  291. << time_in_us_naive << "us.";
  292. float speedup_ratio = static_cast<float>(time_in_us_naive) /
  293. time_in_us_cur;
  294. EXPECT_GE(speedup_ratio, m_perf_check_threshold) << "speedup_ratio="
  295. << speedup_ratio << " threshold=" << m_perf_check_threshold
  296. << " naive_time=" << time_in_us_naive << "us cur_time="
  297. << time_in_us_cur << "us";
  298. }
  299. copy_tensors_from_device(tensors_cur_host, tensors_cur);
  300. if (m_output_canonizer) {
  301. m_output_canonizer(tensors_cur_host);
  302. m_output_canonizer(tensors_naive);
  303. }
  304. check_tensors(tensors_naive, tensors_cur_host);
  305. if (m_extra_opr_impl) {
  306. check_tensors(tensors_naive, *tensors_extra_opr_impl);
  307. }
  308. m_prev_succ = !::testing::Test::HasFailure();
  309. }
  310. std::shared_ptr<CheckerHelper::TensorValueArray>
  311. CheckerHelper::alloc_tensors(Handle *handle, const TensorLayoutArray &layouts,
  312. const size_t offset) {
  313. auto deleter = [handle, offset](TensorValueArray *ptr) {
  314. for (auto &&i: *ptr) {
  315. auto pdata = static_cast<dt_byte*>(i.raw_ptr) +
  316. i.layout.span().low_byte - offset;
  317. megdnn_free(handle, pdata);
  318. }
  319. delete ptr;
  320. };
  321. std::shared_ptr<TensorValueArray> ret{new TensorValueArray, deleter};
  322. for (size_t i = 0; i < layouts.size(); ++ i) {
  323. auto span = layouts[i].span();
  324. ret->emplace_back(static_cast<dt_byte*>(megdnn_malloc(
  325. handle, span.dist_byte() + offset)) -
  326. span.low_byte + offset,
  327. layouts[i]);
  328. }
  329. return ret;
  330. }
  331. void CheckerHelper::init_naive_values() {
  332. auto &&tensors_naive = *m_tensors_naive;
  333. megdnn_assert(!m_input_tensors_fpath || !m_tensor_constraint);
  334. if (m_input_tensors_fpath) {
  335. auto load = load_tensors(m_input_tensors_fpath);
  336. m_input_tensors_fpath = nullptr;
  337. megdnn_assert(load.size() <= tensors_naive.size());
  338. for (size_t i = 0; i < load.size(); ++ i) {
  339. auto &&src = load[i];
  340. auto &&dst = tensors_naive[i];
  341. megdnn_assert(src->layout.eq_layout(dst.layout));
  342. memcpy_noncontig(dst.raw_ptr, src->raw_ptr, dst.layout, memcpy);
  343. }
  344. return;
  345. }
  346. for (size_t i = 0; i < tensors_naive.size(); ++i) {
  347. auto &&tensor = tensors_naive[i];
  348. auto rng = m_rng[i];
  349. if (!rng)
  350. rng = m_default_rng.get();
  351. rng->gen(tensor);
  352. }
  353. if (m_tensor_constraint) {
  354. m_tensor_constraint(tensors_naive);
  355. }
  356. }
  357. void CheckerHelper::copy_tensors_from_device(const TensorValueArray& dest,
  358. const TensorValueArray& src) {
  359. auto impl_d2h = [this](void* dst, const void* src, size_t sz) {
  360. megdnn_memcpy_D2H(m_handle_cur, dst, src, sz);
  361. };
  362. copy_tensors(dest, src, impl_d2h);
  363. }
  364. void CheckerHelper::check_tensors(const TensorValueArray& expected,
  365. const TensorValueArray& computed) {
  366. for (size_t i = 0; i < expected.size(); ++i) {
  367. if (expected[i].layout.ndim == 0)
  368. continue;
  369. MEGDNN_ASSERT_TENSOR_EQ_EPS_AVG(expected[i], computed[i], m_epsilon,
  370. m_max_avg_error,
  371. m_max_avg_biased_error);
  372. }
  373. }
  374. void CheckerHelper::copy_tensors_to_device(const TensorValueArray& dest,
  375. const TensorValueArray& src) {
  376. auto impl_h2d = [this](void* dst, const void* src, size_t sz) {
  377. megdnn_memcpy_H2D(m_handle_cur, dst, src, sz);
  378. };
  379. copy_tensors(dest, src, impl_h2d);
  380. }
  381. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台