|
1234567891011121314151617181920212223242526272829303132333435363738394041424344 |
- # -*- coding: utf-8 -*-
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-
- from ..core._imperative_rt.core2 import set_option
- from ..core._imperative_rt.utils import _set_defrag
-
-
- class DTR:
- r"""
- DTR implements `Dynamic Tensor Rematerialization <https://arxiv.org/abs/2006.09616>`_ in MegEngine.
-
- It is basically an online algorithm for checkpointing driven by certain eviction policies.
-
- .. code-block::
-
- from megengine.utils.dtr import DTR
-
- ds = DTR(memory_budget=5*1024**3)
-
- # your training code
-
- """
-
- def __init__(self, memory_budget=0, tensor_lowerbound=1048576):
- r"""
- :param memory_budget: int. The threshold of memory usage. When memory
- usage exceeds this value, auto evict will be triggered.
- :param tensor_lowerbound: int. The minimum memory limit of the tensor
- that can be evicted. Default: 1MB.
- """
- if memory_budget > 0:
- set_option("enable_auto_drop", 1)
- set_option("enable_drop", 1)
- set_option("buffer_length", 0)
- set_option("memory_budget", memory_budget)
- set_option("tensor_lowerbound", tensor_lowerbound)
- set_option("record_computing_path", 1)
- _set_defrag(True)
|