You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

traced_module.py 64 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757
  1. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  2. #
  3. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  4. #
  5. # Unless required by applicable law or agreed to in writing,
  6. # software distributed under the License is distributed on an
  7. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  8. import builtins
  9. import collections
  10. import copy
  11. import ctypes
  12. import fnmatch
  13. import functools
  14. import inspect
  15. import keyword
  16. import re
  17. import weakref
  18. from inspect import getcallargs, getmembers, isclass, ismethod
  19. from itertools import chain
  20. from types import FunctionType
  21. from typing import Callable, Dict, Iterable, List, Optional, Sequence, Type, Union
  22. from megengine import tensor
  23. from .. import functional as F
  24. from .. import get_logger
  25. from .. import module as M
  26. from ..core._imperative_rt.core2 import Tensor as RawTensor
  27. from ..core._imperative_rt.core2 import (
  28. is_tracing_module,
  29. set_module_tracing,
  30. unset_module_tracing,
  31. )
  32. from ..core._trace_option import set_symbolic_shape
  33. from ..core.tensor.array_method import ArrayMethodMixin
  34. from ..module import Module
  35. from ..module.qat import QATModule
  36. from ..quantization.fake_quant import LSQ, TQT, FakeQuantize, _FakeQuantize
  37. from ..quantization.observer import (
  38. ExponentialMovingAverageObserver,
  39. HistogramObserver,
  40. MinMaxObserver,
  41. Observer,
  42. PassiveObserver,
  43. SyncExponentialMovingAverageObserver,
  44. SyncMinMaxObserver,
  45. )
  46. from ..tensor import Tensor
  47. from .expr import Apply, CallFunction, CallMethod, Constant, Expr, GetAttr, Input
  48. from .fake_quant import FakeQuantize as TM_FakeQuant
  49. from .module_tracer import (
  50. PatchedFn,
  51. Patcher,
  52. active_module_tracer,
  53. get_tensor_wrapable_method,
  54. module_tracer,
  55. set_active_module_tracer,
  56. )
  57. from .node import ModuleNode, Node, NodeMixin, TensorNode
  58. from .pytree import ArgsIndex, tree_flatten
  59. from .utils import replace_container_with_module_container
  60. logger = get_logger(__name__)
  61. def _is_builtin_name(name: str) -> bool:
  62. return (
  63. name in builtins.__dict__
  64. or name in keyword.kwlist
  65. or name in {"inf", "nan", "NoneType"}
  66. )
  67. def _is_leaf(node):
  68. assert isinstance(node, RawTensor), "doesn't support {} in return values".format(
  69. type(node)
  70. )
  71. return isinstance(node, RawTensor)
  72. _enable_node_to_tensor = False
  73. def _convert_node_flag():
  74. return _enable_node_to_tensor
  75. def _set_convert_node_flag(flag: bool = False):
  76. global _enable_node_to_tensor
  77. pre_flag = _enable_node_to_tensor
  78. _enable_node_to_tensor = flag
  79. return pre_flag
  80. def _node_to_tensor(*args, **kwargs):
  81. tensors = []
  82. nodes, tree_def = tree_flatten((args, kwargs))
  83. for n in nodes:
  84. if isinstance(n, TensorNode):
  85. if n.top_graph is not None:
  86. active_module_tracer().current_scope()._add_input(n)
  87. value = n.value
  88. if value is None:
  89. flag = _set_convert_node_flag(False)
  90. unset_module_tracing()
  91. value = F.zeros(shape=n._shape, dtype=n._dtype)
  92. set_module_tracing()
  93. _set_convert_node_flag(flag)
  94. orig_n = NodeMixin.get(value, None)
  95. if orig_n is None or "setitem" not in orig_n._name:
  96. NodeMixin.wrap_safe(value, n)
  97. tensors.append(value)
  98. else:
  99. tensors.append(n)
  100. tensors = tree_def.unflatten(tensors)
  101. return tensors
  102. def _tensor_to_node(tensors):
  103. if tensors is None:
  104. return None
  105. nodes = []
  106. tensors, out_def = tree_flatten(tensors)
  107. for t in tensors:
  108. if isinstance(t, Tensor):
  109. n = NodeMixin.get(t, None)
  110. if isinstance(n, TensorNode):
  111. n.value = t
  112. nodes.append(n)
  113. else:
  114. nodes.append(t)
  115. else:
  116. nodes.append(t)
  117. nodes = out_def.unflatten(nodes)
  118. return nodes
  119. def _wrap_method_to_tensor_node():
  120. def _any_method(name):
  121. def _any(*args, **kwargs):
  122. args, kwargs = _node_to_tensor(*args, **kwargs)
  123. attr = getattr(args[0], name)
  124. outs = attr
  125. if callable(attr):
  126. outs = attr(*(args[1:]), **kwargs)
  127. if name == "__setitem__":
  128. _node_to_tensor(outs)
  129. return None
  130. outs = _tensor_to_node(outs)
  131. return outs
  132. return _any
  133. tensor_method_patch = []
  134. for method in get_tensor_wrapable_method():
  135. patch = PatchedFn(TensorNode, method)
  136. if type(getattr(Tensor, method)) == property:
  137. patch.set_func(property(_any_method(method)))
  138. else:
  139. patch.set_func(_any_method(method))
  140. tensor_method_patch.append(patch)
  141. return tensor_method_patch
  142. def _convert_node_and_tensor(orig_func):
  143. @functools.wraps(orig_func)
  144. def _convert(*args, **kwargs):
  145. if _convert_node_flag() and is_tracing_module():
  146. args, kwargs = _node_to_tensor(*args, **kwargs)
  147. rst = orig_func(*args, **kwargs, method_func=_convert)
  148. rst = _tensor_to_node(rst)
  149. return rst
  150. else:
  151. rst = orig_func(*args, **kwargs)
  152. return rst
  153. return _convert
  154. def _wrap_mnode_getattr(orig_getattr):
  155. @functools.wraps(orig_getattr)
  156. def wraped_fn(self, name):
  157. obj = self.owner
  158. if self.top_graph is not None:
  159. active_module_tracer().current_scope()._add_input(self)
  160. attr = getattr(obj, name)
  161. node = attr
  162. full_name = None
  163. if id(attr) in active_module_tracer().id2name:
  164. full_name = active_module_tracer().id2name[id(attr)]
  165. if not isinstance(attr, TracedModuleBuilder):
  166. if isinstance(attr, Module):
  167. attr = TracedModuleBuilder(attr)
  168. setattr(obj, name, attr)
  169. active_module_tracer().id2name[id(attr)] = full_name
  170. if isinstance(attr, (NodeMixin, RawTensor)):
  171. if full_name:
  172. scope_name = active_module_tracer().current_scope()._module_name
  173. if scope_name:
  174. full_name = full_name[len(scope_name) + 1 :]
  175. else:
  176. full_name = name
  177. else:
  178. full_name = name
  179. NodeMixin.wrap(
  180. attr,
  181. lambda: GetAttr.make(
  182. self,
  183. name,
  184. type=NodeMixin.get_wrapped_type(attr),
  185. orig_name=full_name,
  186. ),
  187. )
  188. if isinstance(attr, (NodeMixin, RawTensor)):
  189. node = NodeMixin.get(attr)
  190. if isinstance(node, ModuleNode):
  191. node._owner = weakref.ref(attr)
  192. return node
  193. return wraped_fn
  194. def _wrap_mnode_call(orig_call):
  195. @functools.wraps(orig_call)
  196. def wraped_fn(self, *args, **kwargs):
  197. obj = self.owner
  198. if self.top_graph is not None:
  199. active_module_tracer().current_scope()._add_input(self)
  200. rst = obj(*args, **kwargs)
  201. return rst
  202. return wraped_fn
  203. def _init_id2name(mod: Module, prefix: str = ""):
  204. id2name = {
  205. id(m): "%s.%s" % (prefix, key)
  206. for key, m in chain(
  207. mod.named_modules(), mod.named_parameters(), mod.named_buffers()
  208. )
  209. }
  210. return id2name
  211. class _InsertExprs:
  212. def __init__(self, graph, expr: Optional[Expr] = None):
  213. self.graph = graph
  214. self.global_scope = InternalGraph(
  215. graph._name, graph._prefix_name, graph._module_name
  216. )
  217. self.global_scope._used_names.update(graph._used_names)
  218. self.expr = expr
  219. self._tensor_method_patch = None
  220. def __enter__(self):
  221. self.use_sym_shape = set_symbolic_shape(True)
  222. set_module_tracing()
  223. _set_convert_node_flag(True)
  224. assert active_module_tracer() is None
  225. module = self.graph.inputs[0].owner
  226. _wrap_func = lambda x: _convert_node_and_tensor(_wrapped_function(x))
  227. set_active_module_tracer(
  228. module_tracer(_wrap_func, _init_id2name(module, self.graph._module_name))
  229. )
  230. active_module_tracer().patcher.__enter__()
  231. for cls, name, func in [
  232. [ModuleNode, "__getattr__", _wrap_mnode_getattr],
  233. [ModuleNode, "__call__", _wrap_mnode_call],
  234. [TracedModuleBuilder, "__call__", _convert_node_and_tensor],
  235. ]:
  236. active_module_tracer().patcher.patch_function(cls, name, func)
  237. self._tensor_method_patch = _wrap_method_to_tensor_node()
  238. active_module_tracer().push_scope(self.global_scope)
  239. def __exit__(self, ty, va, tr):
  240. if va is not None:
  241. return False
  242. set_symbolic_shape(self.use_sym_shape)
  243. unset_module_tracing()
  244. active_module_tracer().patcher.__exit__(ty, va, tr)
  245. _set_convert_node_flag(False)
  246. while self._tensor_method_patch:
  247. pf = self._tensor_method_patch.pop()
  248. pf.set_func(pf.origin_fn)
  249. module = self.graph.inputs[0].owner
  250. for mod, parent in module.modules(with_parent=True):
  251. name = mod._name
  252. if isinstance(mod, TracedModuleBuilder):
  253. mod = mod.build()
  254. if hasattr(mod, "graph"):
  255. for node in mod.graph.nodes():
  256. node.value = None
  257. setattr(parent, name, mod)
  258. set_active_module_tracer(None)
  259. for node in self.global_scope.nodes():
  260. node.value = None
  261. extra_inp_nodes = set(self.global_scope.inputs)
  262. max_inp_expr_idx = -1
  263. for node in extra_inp_nodes:
  264. assert (
  265. node.top_graph == self.graph
  266. ), "The input node ({}) is not in the graph ({})".format(node, self.graph)
  267. if isinstance(node, TensorNode) and node.expr in self.graph._exprs:
  268. max_inp_expr_idx = max(
  269. max_inp_expr_idx, self.graph._exprs.index(node.expr)
  270. )
  271. max_inp_expr_idx += 1
  272. insert_index = -1
  273. if self.expr is not None:
  274. insert_index = self.graph._exprs.index(self.expr)
  275. insert_index += 1
  276. if insert_index < max_inp_expr_idx:
  277. insert_index = max_inp_expr_idx
  278. anchor_index = insert_index - 1
  279. if anchor_index >= 0:
  280. logger.info(
  281. "The new expr will be inserted after ( {} )".format(
  282. self.graph._exprs[anchor_index]
  283. )
  284. )
  285. for expr in self.global_scope._exprs:
  286. self.graph._exprs.insert(insert_index, expr)
  287. insert_index += 1
  288. self.graph._used_names.update(self.global_scope._used_names)
  289. graph = self.graph
  290. while graph.top_graph is not None:
  291. graph = graph.top_graph
  292. graph.inputs[0].owner._update_ref()
  293. return True
  294. class InternalGraph:
  295. r"""``InternalGraph`` is a graph consist of ``Node`` and ``Expr``, it is used to represent the execution procedure of Module's forward method.
  296. Attributes:
  297. _exprs: List of Exprs in order of execution
  298. _inputs: Input Nodes of InternalGraph
  299. _outputs: Output Nodes of InternalGraph
  300. """
  301. _exprs = None # type: List[Expr]
  302. _inputs = None # type: List[Node]
  303. _outputs = None # type: List[Node]
  304. _top_graph = None
  305. def __init__(self, name: str = None, prefix_name: str = "", module_name: str = ""):
  306. self._exprs = []
  307. self._inputs = []
  308. self._outputs = []
  309. self._watch_point = []
  310. self._end_point = []
  311. self._used_names = {}
  312. self._rst = collections.defaultdict(list)
  313. self._name = name
  314. self._prefix_name = prefix_name
  315. self._module_name = module_name
  316. def _insert(self, expr):
  317. self._exprs.append(expr)
  318. def _create_unique_name(self, name: str) -> str:
  319. assert isinstance(name, str), "The name must be a str"
  320. name = re.sub("[^0-9a-zA-Z_]+", "_", name)
  321. if name[0].isdigit():
  322. name = "_{}".format(name)
  323. while name in self._used_names or _is_builtin_name(name):
  324. match = re.match(r"(.*)_(\d+)$", name)
  325. if match is None:
  326. name = name + "_1"
  327. else:
  328. base, num = match.group(1, 2)
  329. name = "{}_{}".format(base, int(num) + 1)
  330. self._used_names.setdefault(name)
  331. return name
  332. @property
  333. def inputs(self):
  334. return self._inputs
  335. @property
  336. def outputs(self):
  337. return self._outputs
  338. @property
  339. def top_graph(self):
  340. if self._top_graph:
  341. return self._top_graph()
  342. return None
  343. def exprs(self, recursive=True):
  344. return ExprFilter(_expr_iter(self, recursive))
  345. def nodes(self, recursive=True):
  346. return NodeFilter(_node_iter(self, recursive))
  347. def get_function_by_type(self, func: Callable = None, recursive=True):
  348. return self.exprs(recursive).call_function(func)
  349. def get_method_by_type(self, method: str = None, recursive=True):
  350. return self.exprs(recursive).call_method(method)
  351. def get_expr_by_id(self, expr_id: List[int] = None, recursive=True):
  352. return self.exprs(recursive).expr_id(expr_id)
  353. def get_module_by_type(self, module_cls: Module, recursive=True):
  354. assert issubclass(module_cls, Module)
  355. return self.nodes(recursive).type(module_cls, ModuleNode)
  356. def get_node_by_id(self, node_id: List[int] = None, recursive=True):
  357. return self.nodes(recursive).node_id(node_id)
  358. def get_node_by_name(
  359. self, name: str = None, ignorecase: bool = True, recursive=True
  360. ):
  361. return self.nodes(recursive).name(name, ignorecase)
  362. def _add_input(self, i):
  363. self._inputs.append(i)
  364. def _add_output(self, o):
  365. self._outputs.append(o)
  366. def _replace_inputs_outputs(self, repl_dict, prefix_name="", module_name=""):
  367. for node, repl_node in repl_dict.items():
  368. assert node in self._inputs or node in self._outputs
  369. for i in node.users:
  370. if i not in repl_node.users:
  371. repl_node.users.append(i)
  372. for idx, i in enumerate(self._inputs):
  373. if i in repl_dict:
  374. self._inputs[idx] = repl_dict[i]
  375. for idx, o in enumerate(self._outputs):
  376. if o in repl_dict:
  377. repl_dict[o]._orig_name = "{}{}".format(module_name, o._orig_name)
  378. self._outputs[idx] = repl_dict[o]
  379. for expr in self._exprs:
  380. for idx, i in enumerate(expr.inputs):
  381. assert isinstance(
  382. i._name, str
  383. ), "The node ({}) name must be a str".format(i)
  384. if i in repl_dict:
  385. expr.inputs[idx] = repl_dict[i]
  386. elif isinstance(i, TensorNode) and prefix_name not in i._name:
  387. if i.top_graph != active_module_tracer().current_scope():
  388. i._name = (
  389. active_module_tracer()
  390. .current_scope()
  391. ._create_unique_name(prefix_name + i._name.lstrip("_"))
  392. )
  393. i._orig_name = "{}{}".format(module_name, i._orig_name)
  394. for idx, o in enumerate(expr.outputs):
  395. assert isinstance(
  396. o._name, str
  397. ), "The node ({}) name must be a str".format(i)
  398. if o in repl_dict:
  399. expr.outputs[idx] = repl_dict[o]
  400. expr.outputs[idx].expr = expr
  401. elif isinstance(o, TensorNode) and prefix_name not in i._name:
  402. if o.top_graph != active_module_tracer().current_scope():
  403. o._name = (
  404. active_module_tracer()
  405. .current_scope()
  406. ._create_unique_name(prefix_name + o._name.lstrip("_"))
  407. )
  408. o._orig_name = "{}{}".format(module_name, o._orig_name)
  409. def get_dep_exprs(self, nodes: Sequence[Node]) -> List[Expr]:
  410. if not isinstance(nodes, Sequence):
  411. nodes = (nodes,)
  412. ret = list()
  413. queue = list(nodes)
  414. visited_queue = list()
  415. while queue:
  416. node = queue.pop()
  417. visited_queue.append(node)
  418. expr = node.expr
  419. if expr not in ret:
  420. ret.append(expr)
  421. for i in expr.inputs:
  422. if i not in queue and i not in visited_queue:
  423. queue.append(i)
  424. return ret
  425. def reset_inputs(self, *args, **kwargs):
  426. forma_mnode = self.inputs[0]
  427. actual_mnodes = forma_mnode.actual_node
  428. call_nodes = []
  429. for n in actual_mnodes:
  430. for c_expr in n.users:
  431. if isinstance(c_expr, CallMethod) and c_expr.method == "__call__":
  432. call_nodes.append((c_expr, n))
  433. moudle = forma_mnode.owner
  434. assert moudle._is_top, "reset_inputs only support the top-level graph"
  435. inputs, tree_def = tree_flatten(((moudle, *args), kwargs))
  436. def create_node(val: Tensor):
  437. node = Input(type=TensorNode).outputs[0]
  438. node.shape = val.shape
  439. node.dtype = val.dtype
  440. return node
  441. formal_node_inputs = [
  442. forma_mnode,
  443. ]
  444. org_argdef = list(moudle.argdef_graph_map.keys())[0]
  445. if call_nodes:
  446. org_argdef = call_nodes[0][0].arg_def
  447. for v in inputs[1:]:
  448. assert isinstance(v, RawTensor)
  449. formal_node_inputs.append(create_node(v))
  450. actual_nodes = []
  451. for e, n in call_nodes:
  452. e.arg_def = tree_def
  453. actual_node_inputs = [
  454. n,
  455. ]
  456. for v in inputs[1:]:
  457. actual_node_inputs.append(create_node(v))
  458. for org_n in e.inputs:
  459. org_n.users.pop(e)
  460. e.inputs[:] = actual_node_inputs
  461. e.const_val = []
  462. actual_nodes.append(actual_node_inputs[1:])
  463. self._inputs[:] = formal_node_inputs
  464. moudle.argdef_graph_map[tree_def] = moudle.argdef_graph_map.pop(org_argdef)
  465. moudle.argdef_outdef_map[tree_def] = moudle.argdef_outdef_map.pop(org_argdef)
  466. # return formal_node_inputs[1:], actual_nodes
  467. return formal_node_inputs[1:]
  468. def add_input_node(self, shape, dtype="float32", name="args"):
  469. forma_mnode = self.inputs[0]
  470. actual_mnodes = forma_mnode.actual_node
  471. moudle = forma_mnode.owner
  472. assert moudle._is_top, "add_input_node only support the top-level graph"
  473. call_nodes = []
  474. for n in actual_mnodes:
  475. for c_expr in n.users:
  476. if isinstance(c_expr, CallMethod) and c_expr.method == "__call__":
  477. call_nodes.append(c_expr)
  478. def create_node(name=None, is_input: bool = True):
  479. if is_input:
  480. node = Input(type=TensorNode, name=name).outputs[0]
  481. else:
  482. node = TensorNode(expr=None, name=None)
  483. node.shape = shape
  484. node.dtype = dtype
  485. return node
  486. org_argdef = list(moudle.argdef_graph_map.keys())[0]
  487. if call_nodes:
  488. org_argdef = call_nodes[0].arg_def
  489. args, kwargs = org_argdef.unflatten(self._inputs)
  490. formal_inp_node = create_node(self._create_unique_name(name), True)
  491. inputs, tree_def = tree_flatten(
  492. ((*args, formal_inp_node), kwargs),
  493. is_const_leaf=lambda x: not isinstance(x, (TensorNode, ModuleNode)),
  494. )
  495. self._inputs[:] = inputs[:]
  496. actual_inp_nodes = []
  497. for e in call_nodes:
  498. args, kwargs = e.unflatten_args(e.inputs)
  499. args = args + (create_node(False),)
  500. inputs, tree_def = tree_flatten(
  501. (args, kwargs),
  502. is_const_leaf=lambda x: not isinstance(x, (TensorNode, ModuleNode)),
  503. )
  504. e.inputs[:] = inputs[:]
  505. e.arg_def = tree_def
  506. actual_inp_nodes.append(args[-1])
  507. moudle.argdef_graph_map[tree_def] = moudle.argdef_graph_map.pop(org_argdef)
  508. moudle.argdef_outdef_map[tree_def] = moudle.argdef_outdef_map.pop(org_argdef)
  509. # return formal_inp_node, actual_inp_nodes
  510. return formal_inp_node
  511. def reset_outputs(self, outputs):
  512. outputs, out_def = tree_flatten(
  513. outputs, is_leaf=lambda x: isinstance(x, TensorNode),
  514. )
  515. forma_mnode = self.inputs[0]
  516. moudle = forma_mnode.owner
  517. assert moudle._is_top, "reset_outputs only support the top-level graph"
  518. actual_mnodes = forma_mnode.actual_node
  519. call_nodes = []
  520. for n in actual_mnodes:
  521. for c_expr in n.users:
  522. if isinstance(c_expr, CallMethod) and c_expr.method == "__call__":
  523. call_nodes.append((c_expr))
  524. def create_node(val: TensorNode, expr: Expr):
  525. node = TensorNode(expr)
  526. node.shape = val.shape
  527. node.dtype = val.dtype
  528. return node
  529. tree_def = list(moudle.argdef_graph_map.keys())[0]
  530. if call_nodes:
  531. tree_def = call_nodes[0].arg_def
  532. actual_nodes = []
  533. for e in call_nodes:
  534. actual_node_outputs = []
  535. for v in outputs:
  536. actual_node_outputs.append(create_node(v, e))
  537. e.outputs[:] = actual_node_outputs
  538. e.out_def = out_def
  539. actual_nodes.append(actual_node_outputs)
  540. self._outputs[:] = outputs
  541. moudle.argdef_outdef_map[tree_def] = out_def
  542. return actual_nodes
  543. def add_output_node(self, node: TensorNode):
  544. forma_mnode = self.inputs[0]
  545. moudle = forma_mnode.owner
  546. assert moudle._is_top, "add_output_node only support the top-level graph"
  547. actual_mnodes = forma_mnode.actual_node
  548. call_nodes = []
  549. for n in actual_mnodes:
  550. for c_expr in n.users:
  551. if isinstance(c_expr, CallMethod) and c_expr.method == "__call__":
  552. call_nodes.append((c_expr))
  553. def create_node(val: TensorNode, expr: Expr):
  554. node = TensorNode(expr)
  555. node.shape = val.shape
  556. node.dtype = val.dtype
  557. return node
  558. tree_def = list(moudle.argdef_graph_map.keys())[0]
  559. if call_nodes:
  560. tree_def = call_nodes[0].arg_def
  561. org_out_def = moudle.argdef_outdef_map[tree_def]
  562. org_outs = org_out_def.unflatten(self._outputs)
  563. outputs, out_def = tree_flatten(
  564. (org_outs, node), is_leaf=lambda x: isinstance(x, TensorNode),
  565. )
  566. self._outputs[:] = outputs
  567. actual_out_nodes = []
  568. for e in call_nodes:
  569. actual_node = create_node(node, e)
  570. org_outs = org_out_def.unflatten(e.outputs)
  571. outputs, out_def = tree_flatten(
  572. (org_outs, actual_node), is_leaf=lambda x: isinstance(x, TensorNode),
  573. )
  574. e.outputs[:] = outputs
  575. e.out_def = out_def
  576. actual_out_nodes.append(actual_node)
  577. moudle.argdef_outdef_map[tree_def] = out_def
  578. return actual_out_nodes
  579. def insert_exprs(self, expr: Optional[Expr] = None):
  580. if expr is not None:
  581. assert expr.top_graph == self, "Expr to insert after is not in graph."
  582. return _InsertExprs(self, expr)
  583. def replace_node(self, repl_dict: Dict[Node, Node]):
  584. while repl_dict:
  585. node, repl_node = repl_dict.popitem()
  586. # check graph inputs and outputs
  587. # assert node not in self.inputs, "Cannot replace inputs"
  588. for i, n in enumerate(self.outputs):
  589. if n is node:
  590. self.outputs[i] = repl_node
  591. # update users of node and repl_node
  592. # update inputs of expr in node.users
  593. graph = repl_node.top_graph
  594. assert graph is not None
  595. index = graph._exprs.index(repl_node.expr)
  596. dep_exprs = self.get_dep_exprs(repl_node)
  597. i = 0
  598. while i < len(node.users):
  599. n = node.users[i]
  600. if n in graph._exprs and index >= graph._exprs.index(n):
  601. i += 1
  602. continue
  603. if n in dep_exprs:
  604. logger.info("Find a loop: ignore this replacement once")
  605. logger.info("node: %s" % node.__repr__())
  606. logger.info("expr: %s" % n.__repr__())
  607. i += 1
  608. continue
  609. repl_node.users.append(n)
  610. node.users.pop(i)
  611. idx = n.inputs.index(node)
  612. n.inputs[idx] = repl_node
  613. def compile(self):
  614. """Delete unused expr."""
  615. dep_exprs = self.get_dep_exprs(self.outputs)
  616. i = 0
  617. while i < len(self._exprs):
  618. expr = self._exprs[i]
  619. if expr in dep_exprs or expr._disable_remove:
  620. i += 1
  621. continue
  622. for n in expr.inputs:
  623. n.users.remove(expr)
  624. self._exprs.remove(expr)
  625. def interpret(self, *inputs):
  626. node2value = {}
  627. end_nodes_set = set(self._end_point)
  628. endnode2value = {}
  629. def get_all_endnode_val(n, v):
  630. if n in end_nodes_set:
  631. endnode2value[n] = v
  632. end_nodes_set.remove(n)
  633. return not end_nodes_set
  634. return False
  635. ref_count = lambda n: len(n.users) + (1 if n in self._outputs else 0)
  636. for n, v in zip(self._inputs, inputs):
  637. if ref_count(n) > 0:
  638. node2value[n] = [v, ref_count(n)]
  639. if n in self._watch_point:
  640. self._rst[n].append(v)
  641. if n in self._end_point and get_all_endnode_val(n, v):
  642. return list(endnode2value[i] for i in self._end_point)
  643. for expr in self._exprs:
  644. values = expr.interpret(*list(node2value[i][0] for i in expr.inputs))
  645. for n in expr.inputs:
  646. node2value[n][1] -= 1
  647. if node2value[n][1] == 0:
  648. node2value.pop(n)
  649. if values is not None:
  650. for n, v in zip(expr.outputs, values):
  651. if ref_count(n) > 0:
  652. node2value[n] = [v, ref_count(n)]
  653. if n in self._watch_point:
  654. self._rst[n] = v
  655. if self._end_point and get_all_endnode_val(n, v):
  656. return list(endnode2value[i] for i in self._end_point)
  657. return list(node2value[i][0] for i in self._outputs)
  658. def eval(self, *inputs):
  659. assert len(inputs) == len(self._inputs) - 1
  660. inp = [self._inputs[0].owner] + list(inputs)
  661. return self.interpret(*inp)
  662. def __repr__(self):
  663. return self.__format__()
  664. def __format__(self, format_spec: str = "") -> str:
  665. saved_format_spec = Node.set_format_spec(format_spec)
  666. name = ""
  667. if self._name:
  668. name = "%s.Graph" % self._name
  669. res = "{} ({}) {{\n\t{}\n\treturn {}\n}}".format(
  670. name,
  671. ", ".join(str(i) for i in self._inputs),
  672. "\n\t".join("{}".format(str(i)) for i in self._exprs),
  673. ", ".join(str(i) for i in self._outputs),
  674. )
  675. Node.set_format_spec(saved_format_spec)
  676. return res
  677. def __getstate__(self):
  678. state = self.__dict__.copy()
  679. if "_top_graph" in state:
  680. state.pop("_top_graph")
  681. return state
  682. def _get_meth_name(obj, func):
  683. tp = obj if isinstance(obj, type) else type(obj)
  684. for cls in tp.mro():
  685. for k, v in cls.__dict__.items():
  686. if v == func:
  687. return k
  688. return None
  689. def _wrapped_function(orig_func):
  690. @functools.wraps(orig_func)
  691. def wrapped_fn(*args, **kwargs):
  692. method_func = wrapped_fn
  693. if "method_func" in kwargs:
  694. method_func = kwargs.pop("method_func")
  695. if is_tracing_module():
  696. unset_module_tracing()
  697. inputs, tree_def = tree_flatten((args, kwargs))
  698. for i in inputs:
  699. if not NodeMixin.get(i, None):
  700. if isinstance(i, (RawTensor, NodeMixin)):
  701. NodeMixin.wrap_safe(i, Constant.make(i))
  702. meth_name, arg_type = None, None
  703. if args:
  704. meth_name = _get_meth_name(args[0], method_func)
  705. arg_type = args[0] if isinstance(args[0], type) else type(args[0])
  706. if meth_name and arg_type and issubclass(arg_type, RawTensor):
  707. self = inputs[0]
  708. if meth_name == "__new__":
  709. if all([not isinstance(i, RawTensor) for i in inputs]):
  710. # only trace Tensor.__new__() when there are tensors in args
  711. set_module_tracing()
  712. return orig_func(*args, **kwargs)
  713. if isinstance(args[1], RawTensor):
  714. node = NodeMixin.get(inputs[1])
  715. inputs[1] = copy.copy(inputs[1])
  716. # copy inputs[1] to avoid tensor and Tensor(tensor) share same m_tensor, which will cause they have same _NodeMixin__node in tracing.
  717. NodeMixin.wrap_safe(inputs[1], node)
  718. args, kwargs = tree_def.unflatten(inputs)
  719. call_node = CallMethod.make(self, meth_name)
  720. else:
  721. call_node = CallMethod.make(NodeMixin.get(self), meth_name)
  722. call_node.add_inputs(inputs[1:])
  723. else:
  724. call_node = CallFunction.make(orig_func)
  725. call_node.add_inputs(inputs)
  726. call_node.arg_def = tree_def
  727. rst = orig_func(*args, **kwargs)
  728. if meth_name == "__setitem__":
  729. rst = self
  730. if rst is not None:
  731. outputs, out_def = tree_flatten(rst, is_leaf=_is_leaf)
  732. call_node.out_def = out_def
  733. else:
  734. outputs = None
  735. call_node.add_outputs(outputs)
  736. set_module_tracing()
  737. return rst
  738. return orig_func(*args, **kwargs)
  739. return wrapped_fn
  740. class TracedModuleBuilder(NodeMixin):
  741. _mod = None # type: Module
  742. _body = None # type: InternalGraph
  743. _is_builtin = None # type: bool
  744. _argdef_graph_map = None # type: Dict[Treedef, "InternalGraph"]
  745. _argdef_outdef_map = None # type: Dict[Treedef, Treedef]
  746. nodes = None
  747. __builder_attributes__ = [
  748. "_mod",
  749. "_body",
  750. "_NodeMixin__node",
  751. "_is_builtin",
  752. "build",
  753. "_record_wrapped_nodes",
  754. "_argdef_graph_map",
  755. "_argdef_outdef_map",
  756. "nodes",
  757. "__class__",
  758. "__dict__",
  759. ]
  760. def __init__(self, mod, is_top_module=False):
  761. super(TracedModuleBuilder, self).__init__()
  762. assert isinstance(mod, Module)
  763. self._mod = mod
  764. self._body = None
  765. self._is_top = is_top_module
  766. self._is_builtin = (
  767. True
  768. if isinstance(mod, (Observer, _FakeQuantize))
  769. else module_tracer.is_builtin(mod)
  770. )
  771. if isinstance(self._mod, QATModule):
  772. unset_module_tracing()
  773. self._check_qat_module(self._mod)
  774. set_module_tracing()
  775. self._argdef_graph_map = {}
  776. self._argdef_outdef_map = {}
  777. self.nodes = set()
  778. # The builder will be passed to self._mod.forward as 'self' argument. If the 'forward' uses super().xxx to call method of its base classes, the trace procedure will throw exceprion, because the builder doesn't inherit from self._mod.__bases__.
  779. # modify self.__class__ and let the builder inherit from TracedModuleBuilder and mod.__class__.
  780. self.__class__ = type(
  781. "TracedModuleBuilder",
  782. (TracedModuleBuilder, mod.__class__),
  783. dict(TracedModuleBuilder.__dict__),
  784. )
  785. def _check_qat_module(self, qat_module):
  786. def isbuiltin(m):
  787. return m is None or module_tracer.is_builtin(m)
  788. if qat_module.with_act:
  789. act_observer = qat_module.act_observer
  790. act_fakequant = qat_module.act_fake_quant
  791. if not isbuiltin(act_observer) or not isbuiltin(act_fakequant):
  792. qparams = (
  793. act_observer.get_qparams()
  794. if hasattr(act_observer, "get_qparams")
  795. else act_fakequant.get_qparams()
  796. )
  797. dtype = (
  798. act_observer.dtype
  799. if hasattr(act_observer, "dtype")
  800. else act_fakequant.dtype
  801. )
  802. qat_module.act_observer = None
  803. qat_module.act_fake_quant = TM_FakeQuant(dtype)
  804. qat_module.act_fake_quant.set_qparams(qparams)
  805. if qat_module.with_weight:
  806. weight_observer = qat_module.weight_observer
  807. weight_fakequant = qat_module.weight_fake_quant
  808. if not isbuiltin(weight_observer) or not isbuiltin(weight_fakequant):
  809. qparams = (
  810. weight_observer.get_qparams()
  811. if hasattr(weight_observer, "get_qparams")
  812. else weight_fakequant.get_qparams()
  813. )
  814. dtype = (
  815. weight_observer.dtype
  816. if hasattr(weight_observer, "dtype")
  817. else weight_fakequant.dtype
  818. )
  819. qat_module.weight_observer = None
  820. qat_module.weight_fake_quant = TM_FakeQuant(dtype)
  821. qat_module.weight_fake_quant.set_qparams(qparams)
  822. def build(self):
  823. if self._is_builtin or isinstance(self._mod, TracedModule):
  824. if module_tracer.is_builtin(self._mod) or isinstance(
  825. self._mod, TracedModule
  826. ):
  827. mod_type = type(self._mod)
  828. else:
  829. assert isinstance(self._mod, (Observer, _FakeQuantize))
  830. mod_type = (
  831. Observer if isinstance(self._mod, Observer) else _FakeQuantize
  832. )
  833. for node in self.nodes:
  834. node.module_type = mod_type
  835. return self._mod
  836. else:
  837. is_qat = isinstance(self._mod, QATModule)
  838. traced_module = TracedModule(
  839. self._is_top, self._argdef_graph_map, self._argdef_outdef_map, is_qat
  840. )
  841. for _, g in self._argdef_graph_map.items():
  842. g.compile()
  843. for k, v in self.__dict__.items():
  844. if k not in TracedModuleBuilder.__builder_attributes__:
  845. if isinstance(v, TracedModuleBuilder):
  846. v = v.build()
  847. setattr(traced_module, k, v)
  848. elif isinstance(v, RawTensor):
  849. setattr(traced_module, k, v)
  850. if isinstance(self._mod, QATModule):
  851. unset_module_tracing()
  852. traced_module.with_act = self._mod.with_act
  853. traced_module.with_weight = self._mod.with_weight
  854. if not hasattr(traced_module, "act_fake_quant"):
  855. traced_module.act_fakequant = None
  856. if not hasattr(traced_module, "act_observer"):
  857. traced_module.act_observer = None
  858. if not hasattr(traced_module, "weight_fake_quant"):
  859. traced_module.weight_fakequant = None
  860. if not hasattr(traced_module, "weight_observer"):
  861. traced_module.weight_observer = None
  862. set_module_tracing()
  863. return traced_module
  864. def _record_wrapped_nodes(self, node):
  865. self.nodes.add(node)
  866. def __call__(self, *args, **kwargs):
  867. assert isinstance(self._mod, Module)
  868. # prepare args and kwargs for inner graph
  869. if "method_func" in kwargs:
  870. kwargs.pop("method_func")
  871. def mark_constant(x):
  872. node = NodeMixin.get(x, None)
  873. if node is None: # capture as constant
  874. NodeMixin.wrap(x, lambda: Constant.make(x))
  875. inputs, tree_def = tree_flatten(((self, *args), kwargs))
  876. for i in inputs:
  877. mark_constant(i)
  878. callnode = CallMethod.make(NodeMixin.get(self))
  879. callnode.add_inputs(inputs[1:])
  880. callnode.arg_def = tree_def
  881. if (
  882. self._is_builtin
  883. or tree_def in self._argdef_graph_map
  884. or isinstance(self._mod, TracedModule)
  885. ):
  886. unset_module_tracing()
  887. rst = self._mod(*args, **kwargs)
  888. outputs, out_def = tree_flatten(rst, is_leaf=_is_leaf)
  889. set_module_tracing()
  890. if self._is_builtin:
  891. self._body = None
  892. elif tree_def in self._argdef_graph_map:
  893. self._body = self._argdef_graph_map[tree_def]
  894. else:
  895. self._mod._is_top = False
  896. self._body = self._mod.graph
  897. else:
  898. self_node = None
  899. orig_self = NodeMixin.get(self)
  900. top_graph = active_module_tracer().current_scope()
  901. graph_prefix_name = top_graph._name
  902. if top_graph._prefix_name:
  903. graph_prefix_name = "{}_{}".format(
  904. top_graph._prefix_name, graph_prefix_name.lstrip("_")
  905. )
  906. module_name = orig_self._orig_name
  907. if top_graph._module_name:
  908. module_name = "{}.{}".format(top_graph._module_name, module_name)
  909. self._body = InternalGraph(
  910. orig_self._name, prefix_name=graph_prefix_name, module_name=module_name
  911. )
  912. active_module_tracer().push_scope(self._body)
  913. # rebind self to new input node
  914. if self_node:
  915. NodeMixin.wrap_safe(self, self_node)
  916. active_module_tracer().current_scope()._add_input(self_node)
  917. else:
  918. NodeMixin.wrap_safe(
  919. self,
  920. self_node
  921. if self_node
  922. else Input.make("self", NodeMixin.get_wrapped_type(self), ""),
  923. )
  924. origin_inp_node = [NodeMixin.get(i, None) for i in inputs[1:]]
  925. # prepare args and kwargs for inner graph
  926. index_args, index_kwargs = tree_def.unflatten(
  927. [
  928. ArgsIndex(0),
  929. *list(ArgsIndex(i + 1) for i in range(len(origin_inp_node))),
  930. ]
  931. )
  932. key2idx = getcallargs(type(self._mod).forward, *index_args, **index_kwargs)
  933. idx2key = {}
  934. for k, v in key2idx.items():
  935. if isinstance(v, ArgsIndex):
  936. idx2key[v.index] = k
  937. else:
  938. flatten_argidx, _ = tree_flatten(v)
  939. for _i, v in enumerate(flatten_argidx):
  940. if isinstance(v, ArgsIndex):
  941. idx2key[v.index] = k + "_%d" % _i
  942. def wrap(x, name):
  943. if isinstance(x, (RawTensor, NodeMixin)):
  944. NodeMixin.wrap(
  945. x,
  946. lambda: Input.make(
  947. type=NodeMixin.get_wrapped_type(x), name=name
  948. ),
  949. )
  950. return x
  951. args = [self]
  952. for i, v in enumerate(inputs[1:]):
  953. args.append(wrap(v, idx2key[i + 1]))
  954. args, kwargs = tree_def.unflatten(args)
  955. active_module_tracer().patcher.auto_patch(
  956. getattr(getattr(self._mod, "forward", self._mod), "__globals__", {})
  957. )
  958. rst = type(self._mod).forward(*args, **kwargs)
  959. if _convert_node_flag():
  960. rst = _node_to_tensor(rst)[0][0]
  961. outputs, out_def = tree_flatten(rst, is_leaf=_is_leaf)
  962. for i in (
  963. outputs if isinstance(outputs, collections.abc.Sequence) else (outputs,)
  964. ):
  965. active_module_tracer().current_scope()._add_output(NodeMixin.get(i))
  966. NodeMixin.wrap_safe(self, orig_self)
  967. for arg, node in zip(inputs[1:], origin_inp_node):
  968. if node:
  969. NodeMixin.wrap_safe(arg, node)
  970. active_module_tracer().pop_scope()
  971. # rebind output to outer graph
  972. callnode.out_def = out_def
  973. callnode.add_outputs(outputs)
  974. self._argdef_graph_map[callnode.arg_def] = self._body
  975. self._argdef_outdef_map[callnode.arg_def] = out_def
  976. return rst
  977. def __setattr__(self, name, value):
  978. object.__setattr__(self, name, value)
  979. def __repr__(self):
  980. return repr(self._mod)
  981. def __getattr__(self, name):
  982. if name not in self._mod.__dict__:
  983. attr = getattr(type(self._mod), name).__get__(self, type(self))
  984. else:
  985. attr = getattr(self._mod, name)
  986. full_name = None
  987. if (
  988. isinstance(attr, FunctionType)
  989. and id(attr) in active_module_tracer().patcher.patched_fn_ids
  990. ):
  991. return active_module_tracer().patcher.wrap_fn(attr)
  992. if id(attr) in active_module_tracer().id2name:
  993. full_name = active_module_tracer().id2name[id(attr)]
  994. if isinstance(attr, (List, Dict)):
  995. unset_module_tracing()
  996. has_module, m_container = replace_container_with_module_container(attr)
  997. if m_container:
  998. attr = m_container
  999. if has_module and not m_container:
  1000. raise ValueError(
  1001. "Can not trace the module that uses the same container to store Module and Non-Module objects "
  1002. )
  1003. set_module_tracing()
  1004. if isinstance(attr, Module):
  1005. attr = TracedModuleBuilder(attr)
  1006. if isinstance(attr, (Module, RawTensor)):
  1007. setattr(self, name, attr)
  1008. active_module_tracer().id2name[id(attr)] = full_name
  1009. if full_name:
  1010. scope_name = active_module_tracer().current_scope()._module_name
  1011. if scope_name:
  1012. full_name = full_name[len(scope_name) + 1 :]
  1013. else:
  1014. full_name = name
  1015. else:
  1016. full_name = name
  1017. NodeMixin.wrap(
  1018. attr,
  1019. lambda: GetAttr.make(
  1020. NodeMixin.get(self),
  1021. name,
  1022. type=NodeMixin.get_wrapped_type(attr),
  1023. orig_name=full_name,
  1024. ),
  1025. )
  1026. return attr
  1027. def __getattribute__(self, name):
  1028. if name in TracedModuleBuilder.__builder_attributes__:
  1029. return object.__getattribute__(self, name)
  1030. else:
  1031. wrapped = object.__getattribute__(self, name)
  1032. class_members = dict(inspect.getmembers(self.__class__))
  1033. if name in self._mod.__dict__:
  1034. mod_attr = getattr(self._mod, name)
  1035. if name in class_members:
  1036. if (
  1037. not isinstance(wrapped, TracedModuleBuilder)
  1038. and wrapped is not mod_attr
  1039. ):
  1040. wrapped = self.__getattr__(name)
  1041. if isinstance(wrapped, TracedModuleBuilder):
  1042. if not isinstance(mod_attr, (List, Dict)):
  1043. assert mod_attr is wrapped._mod
  1044. else:
  1045. assert mod_attr is wrapped
  1046. full_name = None
  1047. if id(mod_attr) in active_module_tracer().id2name:
  1048. full_name = active_module_tracer().id2name[id(mod_attr)]
  1049. scope_name = active_module_tracer().current_scope()._module_name
  1050. if full_name and scope_name:
  1051. full_name = full_name[len(scope_name) + 1 :]
  1052. else:
  1053. full_name = name
  1054. else:
  1055. full_name = name
  1056. # assert not self._is_builtin
  1057. if isinstance(wrapped, (NodeMixin, RawTensor)):
  1058. NodeMixin.wrap(
  1059. wrapped,
  1060. lambda: GetAttr.make(
  1061. NodeMixin.get(self),
  1062. name,
  1063. type=NodeMixin.get_wrapped_type(wrapped),
  1064. orig_name=full_name,
  1065. ),
  1066. )
  1067. return wrapped
  1068. class _expr_iter:
  1069. def __init__(self, graph: InternalGraph, recursive: bool = True):
  1070. self.graph = graph
  1071. self.recursive = recursive
  1072. def __iter__(self):
  1073. for expr in self.graph._exprs:
  1074. if isinstance(expr, CallMethod) and isinstance(expr.inputs[0], ModuleNode):
  1075. yield expr
  1076. if self.recursive and expr.graph is not None:
  1077. yield from expr.graph.exprs(self.recursive)
  1078. else:
  1079. yield expr
  1080. class _node_iter:
  1081. def __init__(self, graph: InternalGraph, recursive: bool = True) -> None:
  1082. nodes = []
  1083. node_ids = set()
  1084. for expr in graph.exprs(recursive):
  1085. for n in expr.inputs + expr.outputs:
  1086. if n._id in node_ids:
  1087. continue
  1088. nodes.append(n)
  1089. node_ids.add(n._id)
  1090. self.nodes = list(sorted(nodes, key=lambda x: x._id))
  1091. def __iter__(self):
  1092. for node in self.nodes:
  1093. yield node
  1094. class BaseFilter:
  1095. def __init__(self, expr_iter: Iterable):
  1096. self._iter = expr_iter
  1097. def __iter__(self):
  1098. return iter(self._iter)
  1099. def as_list(self):
  1100. return list(self)
  1101. def as_dict(self):
  1102. return collections.OrderedDict((i._id, i) for i in self)
  1103. def as_unique(self):
  1104. rst = self.as_list()
  1105. assert len(rst) == 1, "{} elements found".format(len(rst))
  1106. (expr,) = self
  1107. return expr
  1108. def as_count(self):
  1109. return sum(1 for _ in self)
  1110. class ExprFilter(BaseFilter):
  1111. def call_function(self, func):
  1112. return ExprFilterCallFunction(self, func)
  1113. def call_method(self, method):
  1114. return ExprFilterCallMethod(self, method)
  1115. def expr_id(self, expr_id: List[int]):
  1116. return ExprFilterExprId(self, expr_id)
  1117. class NodeFilter(BaseFilter):
  1118. def type(self, owner_type, node_type):
  1119. return NodeFilterType(self, owner_type, node_type)
  1120. def node_id(self, node_id: List[int]):
  1121. return NodeFilterNodeId(self, node_id)
  1122. def name(self, name: str, ignorecase: bool = True):
  1123. return NodeFilterName(self, name, ignorecase)
  1124. class NodeFilterType(NodeFilter):
  1125. def __init__(self, expr_iter, owner_type, node_type):
  1126. super().__init__(expr_iter)
  1127. self.owner_type = owner_type
  1128. self.node_type = node_type
  1129. def __iter__(self):
  1130. for node in self._iter:
  1131. if not isinstance(node, self.node_type):
  1132. continue
  1133. if not hasattr(node, "owner"):
  1134. continue
  1135. if isinstance(node.owner, self.owner_type):
  1136. yield node
  1137. class NodeFilterNodeId(NodeFilter):
  1138. def __init__(self, expr_iter, node_id: List[int]):
  1139. super().__init__(expr_iter)
  1140. if not isinstance(node_id, Sequence):
  1141. node_id = [node_id]
  1142. self.node_id = node_id
  1143. def __iter__(self):
  1144. for node in self._iter:
  1145. if node._id in self.node_id:
  1146. yield node
  1147. class NodeFilterName(NodeFilter):
  1148. _re = None
  1149. def __init__(self, node_iter, pattern, ignorecase):
  1150. super().__init__(node_iter)
  1151. self.pattern = pattern
  1152. self._re = self.make_re(pattern, ignorecase)
  1153. @classmethod
  1154. def make_re(cls, pattern, ignorecase=True):
  1155. assert isinstance(pattern, str), "bad pattern: {!r}".format(pattern)
  1156. assert isinstance(ignorecase, bool)
  1157. flags = 0
  1158. if ignorecase:
  1159. flags |= re.IGNORECASE
  1160. return re.compile(fnmatch.translate(pattern), flags=flags)
  1161. def __iter__(self):
  1162. for i in self._iter:
  1163. graph = i.top_graph
  1164. name = "{}_{}".format(graph._name, i._name.lstrip("_"))
  1165. if graph._prefix_name:
  1166. name = "{}_{}".format(graph._prefix_name, name.lstrip("_"))
  1167. if self.pattern == name or self._re.match(name):
  1168. yield i
  1169. class ExprFilterCallFunction(ExprFilter):
  1170. def __init__(self, expr_iter, func: Callable = None):
  1171. super().__init__(expr_iter)
  1172. self.func = func
  1173. def __iter__(self):
  1174. for expr in self._iter:
  1175. if not isinstance(expr, CallFunction):
  1176. continue
  1177. if self.func is None or expr.func == self.func:
  1178. yield expr
  1179. class ExprFilterCallMethod(ExprFilter):
  1180. def __init__(self, expr_iter, method: str = None):
  1181. super().__init__(expr_iter)
  1182. self.method = method
  1183. def __iter__(self):
  1184. for expr in self._iter:
  1185. if not isinstance(expr, CallMethod):
  1186. continue
  1187. if self.method is None or expr.method == self.method:
  1188. yield expr
  1189. class ExprFilterExprId(ExprFilter):
  1190. def __init__(self, expr_iter, expr_id: List[int]):
  1191. super().__init__(expr_iter)
  1192. if not isinstance(expr_id, Sequence):
  1193. expr_id = [expr_id]
  1194. self.expr_id = expr_id
  1195. def __iter__(self):
  1196. for expr in self._iter:
  1197. if expr._id in self.expr_id:
  1198. yield expr
  1199. class TracedModule(Module):
  1200. r"""`TracedModule` is the Module created by tracing normal module. It owns an argdef to graph(InternalGraph) map. The forward method of `TracedModule` will get a graph from `argdef_graph_map` according to the argdef of input args/kwargs and interpret it."""
  1201. # m_node = None # type: ModuleNode
  1202. argdef_graph_map = None
  1203. argdef_outdef_map = None
  1204. def __init__(self, is_top, argdef_graph_map, argdef_outdef_map, is_qat=False):
  1205. super(TracedModule, self).__init__()
  1206. self.argdef_graph_map = argdef_graph_map
  1207. self.argdef_outdef_map = argdef_outdef_map
  1208. self._is_top = is_top
  1209. self.watch_points = []
  1210. self.watch_node_value = {}
  1211. self.end_points = []
  1212. self.is_qat = is_qat
  1213. def forward(self, *args, **kwargs):
  1214. inputs, treedef = tree_flatten(((self, *args), kwargs))
  1215. assert treedef in self.argdef_graph_map
  1216. inputs = filter(
  1217. lambda i: isinstance(i, (Module, TracedModuleBuilder, RawTensor)), inputs
  1218. ) # allow TracedModuleBuilder for retrace.
  1219. outputs = self.argdef_graph_map[treedef].interpret(*inputs)
  1220. if self.watch_points:
  1221. self.watch_node_value = {}
  1222. for n in self.watch_points:
  1223. self.watch_node_value[n] = n.top_graph._rst.pop(n)
  1224. if self.end_points:
  1225. return outputs
  1226. out_def = self.argdef_outdef_map[treedef]
  1227. outputs = out_def.unflatten(outputs)
  1228. return outputs
  1229. def set_watch_points(self, nodes):
  1230. if not isinstance(nodes, Sequence):
  1231. nodes = [nodes]
  1232. self.watch_points = nodes
  1233. for n in nodes:
  1234. n.top_graph._watch_point.append(n)
  1235. def clear_watch_points(self):
  1236. for n in self.watch_points:
  1237. n.top_graph._watch_point = []
  1238. self.watch_points = []
  1239. self.watch_node_value = {}
  1240. def set_end_points(self, nodes):
  1241. if not isinstance(nodes, Sequence):
  1242. nodes = [nodes]
  1243. self.end_points = nodes
  1244. graphs = list(self.argdef_graph_map.values())
  1245. for n in nodes:
  1246. assert n.top_graph in graphs
  1247. n.top_graph._end_point.append(n)
  1248. def clear_end_points(self):
  1249. for n in self.end_points:
  1250. n.top_graph._end_point = []
  1251. self.end_points = []
  1252. @property
  1253. def graph(self) -> InternalGraph:
  1254. if self._is_top:
  1255. self._update_ref()
  1256. assert len(self.argdef_graph_map) == 1
  1257. return list(self.argdef_graph_map.values())[0]
  1258. def _update_ref(self, actual_node_map: Union[Dict] = None, top_graph=None):
  1259. for inp_def, graph in self.argdef_graph_map.items():
  1260. if top_graph is not None:
  1261. graph._top_graph = weakref.ref(top_graph)
  1262. for n in graph._inputs + graph.outputs:
  1263. n._top_graph = weakref.ref(graph)
  1264. graph._inputs[0]._owner = weakref.ref(self)
  1265. for i, n in enumerate(graph._inputs):
  1266. n.actual_node = []
  1267. if actual_node_map is not None and inp_def in actual_node_map.keys():
  1268. n.actual_node = list(list(zip(*(actual_node_map[inp_def])))[i])
  1269. node2obj = {}
  1270. next_actual_node_map = collections.defaultdict(
  1271. lambda: collections.defaultdict(list)
  1272. )
  1273. node2obj[graph._inputs[0]] = self
  1274. for expr in graph._exprs:
  1275. for n in expr.inputs + expr.outputs:
  1276. n._top_graph = weakref.ref(graph)
  1277. expr._top_graph = weakref.ref(graph)
  1278. if isinstance(expr, GetAttr) and isinstance(
  1279. expr.outputs[0], ModuleNode
  1280. ):
  1281. obj = getattr(node2obj[expr.inputs[0]], expr.name)
  1282. expr.outputs[0]._owner = weakref.ref(obj)
  1283. node2obj[expr.outputs[0]] = obj
  1284. if isinstance(expr, Constant) and isinstance(
  1285. expr.outputs[0], ModuleNode
  1286. ):
  1287. obj = expr.value
  1288. expr.outputs[0]._owner = weakref.ref(obj)
  1289. node2obj[expr.outputs[0]] = obj
  1290. if (
  1291. isinstance(expr, CallMethod)
  1292. and expr.method == "__call__"
  1293. and isinstance(expr.inputs[0], ModuleNode)
  1294. ):
  1295. obj = node2obj[expr.inputs[0]]
  1296. if expr.arg_def is not None:
  1297. next_actual_node_map[obj][expr.arg_def].append(expr.inputs)
  1298. for obj in node2obj.values():
  1299. if obj is self:
  1300. continue
  1301. mnode_map = None
  1302. if obj in next_actual_node_map.keys():
  1303. mnode_map = next_actual_node_map[obj]
  1304. if isinstance(obj, TracedModule):
  1305. obj._update_ref(mnode_map, graph)
  1306. def flatten(self):
  1307. r"""Get a new module, which eliminates ``GetAttr`` and has no hierarchy.
  1308. :return: :class:`TracedModule`
  1309. """
  1310. new_module = copy.deepcopy(self)
  1311. assert active_module_tracer() is None
  1312. id2name = _init_id2name(new_module, "self")
  1313. set_active_module_tracer(module_tracer(lambda x: x, {}))
  1314. active_module_tracer().push_scope(new_module.graph)
  1315. def _flatten_subgraph(
  1316. graph: InternalGraph,
  1317. module: Module,
  1318. call=None,
  1319. prefix_name="",
  1320. module_name="",
  1321. ):
  1322. if isinstance(prefix_name, str) and prefix_name and prefix_name[-1] != "_":
  1323. prefix_name += "_"
  1324. if isinstance(module_name, str) and module_name:
  1325. module_name += "."
  1326. if graph is None or module.is_qat:
  1327. assert not isinstance(module, TracedModule) or module.is_qat
  1328. const = Constant(module, id2name[id(module)])
  1329. m_node = call.inputs[0]
  1330. if m_node.top_graph != active_module_tracer().current_scope():
  1331. m_node._name = (
  1332. active_module_tracer()
  1333. .current_scope()
  1334. ._create_unique_name(prefix_name)
  1335. )
  1336. m_node._orig_name = id2name[id(module)][5:]
  1337. const.outputs[0] = m_node
  1338. const.outputs[0].expr = const
  1339. return [const, call]
  1340. if call is not None:
  1341. graph = copy.deepcopy(graph)
  1342. exprs = []
  1343. node2obj = {}
  1344. node2obj[graph._inputs[0]] = module
  1345. if call:
  1346. node2obj[call.inputs[0]] = module
  1347. # replace inputs for submodule's exprx
  1348. if call:
  1349. repl_dict = dict(zip(graph._inputs, call.inputs))
  1350. for ind, out in enumerate(graph.outputs):
  1351. if isinstance(out.expr, Input):
  1352. assert out in repl_dict
  1353. call_out = call.outputs[ind]
  1354. for expr in call.outputs[ind].users:
  1355. for index, inp in enumerate(expr.inputs):
  1356. if inp is call_out:
  1357. expr.inputs[index] = repl_dict[out]
  1358. repl_dict[out].users.append(expr)
  1359. continue
  1360. repl_dict[out] = call.outputs[ind]
  1361. graph._replace_inputs_outputs(repl_dict, prefix_name, module_name)
  1362. for expr in graph._exprs:
  1363. if isinstance(expr, GetAttr):
  1364. # replace GetAttr with Constant
  1365. if isinstance(expr.outputs[0], TensorNode):
  1366. const = Constant(getattr(node2obj[expr.inputs[0]], expr.name))
  1367. const.outputs = expr.outputs
  1368. const.outputs[0].expr = const
  1369. exprs.append(const)
  1370. elif isinstance(expr.outputs[0], ModuleNode):
  1371. node2obj[expr.outputs[0]] = getattr(
  1372. node2obj[expr.inputs[0]], expr.name
  1373. )
  1374. elif isinstance(expr, CallMethod):
  1375. obj_node = expr.inputs[0]
  1376. if isinstance(obj_node, ModuleNode):
  1377. pre_expr = expr.inputs[0].expr
  1378. if isinstance(pre_expr, GetAttr):
  1379. (obj,) = pre_expr.interpret(node2obj[pre_expr.inputs[0]])
  1380. expr_graph = (
  1381. obj.argdef_graph_map[expr.arg_def]
  1382. if hasattr(obj, "argdef_graph_map")
  1383. else None
  1384. )
  1385. exprs.extend(
  1386. _flatten_subgraph(
  1387. expr_graph,
  1388. obj,
  1389. expr,
  1390. prefix_name + obj_node._name.lstrip("_"),
  1391. module_name + obj_node._orig_name,
  1392. )
  1393. )
  1394. else:
  1395. # module has been replaced.
  1396. assert isinstance(pre_expr, Constant)
  1397. exprs.append(expr)
  1398. else:
  1399. exprs.append(expr)
  1400. else:
  1401. exprs.append(expr)
  1402. if call is not None:
  1403. for i in call.inputs:
  1404. i.users.remove(call)
  1405. return exprs
  1406. new_module.graph._exprs = _flatten_subgraph(new_module.graph, new_module)
  1407. new_module.graph.compile()
  1408. set_active_module_tracer(None)
  1409. for _id, expr in enumerate(new_module.graph._exprs):
  1410. expr._id = _id
  1411. total_node_id = 0
  1412. for i in new_module.graph._inputs:
  1413. i._id = total_node_id
  1414. total_node_id += 1
  1415. for expr in new_module.graph._exprs:
  1416. for o in expr.outputs:
  1417. o._id = total_node_id
  1418. total_node_id += 1
  1419. return new_module
  1420. def __getstate__(self):
  1421. d = self.__dict__
  1422. for k in Module.__dict__:
  1423. d.pop(k, None)
  1424. return d
  1425. def cpp_apply_module_trace(opdef, *args):
  1426. return Apply.apply_module_trace_hook(opdef, *args)
  1427. def register_as_builtin(mod_cls: Type[Module]) -> None:
  1428. r"""Registers class ``mod_cls`` (subclass of megengine.module.Module) as builtin module.
  1429. Args:
  1430. mod_cls: the Module class which will be threated as builtin module in tracing
  1431. """
  1432. module_tracer.register_as_builtin(mod_cls)
  1433. def wrap(func: Callable):
  1434. r"""Call this function to register func as a builtin function."""
  1435. assert callable(func), "func must be a callable"
  1436. assert hasattr(func, "__code__")
  1437. fn_name = func.__code__.co_name
  1438. currentframe = inspect.currentframe()
  1439. assert currentframe is not None
  1440. f = currentframe.f_back
  1441. assert f is not None
  1442. assert (
  1443. f.f_code.co_name == "<module>"
  1444. ), "wrap must be called at the top level of a module"
  1445. Patcher._builtin_functions.append((f.f_globals, fn_name))
  1446. return func
  1447. def _register_all_builtin_module():
  1448. for sub_mod in [M, M.qat, M.quantized]:
  1449. for m in getmembers(sub_mod):
  1450. if (
  1451. isclass(m[1])
  1452. and issubclass(m[1], M.Module)
  1453. and m[1] is not M.Sequential
  1454. ):
  1455. module_tracer.register_as_builtin(m[1])
  1456. module_tracer.register_as_builtin(Observer)
  1457. module_tracer.register_as_builtin(MinMaxObserver)
  1458. module_tracer.register_as_builtin(SyncMinMaxObserver)
  1459. module_tracer.register_as_builtin(ExponentialMovingAverageObserver)
  1460. module_tracer.register_as_builtin(SyncExponentialMovingAverageObserver)
  1461. module_tracer.register_as_builtin(HistogramObserver)
  1462. module_tracer.register_as_builtin(PassiveObserver)
  1463. module_tracer.register_as_builtin(LSQ)
  1464. module_tracer.register_as_builtin(TQT)
  1465. module_tracer.register_as_builtin(FakeQuantize)
  1466. module_tracer.register_as_builtin(TM_FakeQuant)
  1467. def trace_module(mod: Module, *args: Tensor, **kwargs: Tensor) -> TracedModule:
  1468. r"""Traces module ``mod`` and returns corresponding TracedModule.
  1469. Args:
  1470. mod: the module will be converted to TracedModule
  1471. input: the positional arguments passed to forward method of ``mod``
  1472. kwargs: the keyword arguments passed to forward method of ``mod``
  1473. """
  1474. assert active_module_tracer() is None
  1475. assert isinstance(mod, Module)
  1476. try:
  1477. use_sym_shape = set_symbolic_shape(True)
  1478. set_module_tracing()
  1479. set_active_module_tracer(
  1480. module_tracer(_wrapped_function, _init_id2name(mod, "self"))
  1481. )
  1482. with active_module_tracer().patcher:
  1483. global_scope = InternalGraph(name="")
  1484. active_module_tracer().push_scope(global_scope)
  1485. builder = TracedModuleBuilder(mod, True)
  1486. name = mod._name if mod._name else mod.__class__.__name__
  1487. NodeMixin.wrap_safe(builder, Input.make(name, ModuleNode, orig_name="self"))
  1488. inputs, _ = tree_flatten((args, kwargs))
  1489. for _, i in enumerate(inputs):
  1490. # assert isinstance(i, Tensor), "not support "
  1491. if isinstance(i, RawTensor):
  1492. NodeMixin.wrap_safe(
  1493. i, Input.make("arg_{}".format(_), NodeMixin.get_wrapped_type(i))
  1494. )
  1495. builder(*args, **kwargs)
  1496. active_module_tracer().pop_scope()
  1497. return builder.build()
  1498. finally:
  1499. set_symbolic_shape(use_sym_shape)
  1500. set_active_module_tracer(None)
  1501. unset_module_tracing()

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台