You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

checker.h 21 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574
  1. /**
  2. * \file dnn/test/common/checker.h
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #pragma once
  12. #include "megdnn/basic_types.h"
  13. #include "megdnn/tensor_iter.h"
  14. #include "test/common/opr_algo_proxy.h"
  15. #include "test/common/opr_proxy.h"
  16. #include "test/common/rng.h"
  17. #include <gtest/gtest.h>
  18. #include <memory>
  19. #include <regex>
  20. #include <unordered_map>
  21. // clang-format off
  22. #if defined(__has_feature)
  23. #if __has_feature(address_sanitizer)
  24. #define MEGDNN_TEST_ASAN 1
  25. #else
  26. #define MEGDNN_TEST_ASAN 0
  27. #endif
  28. #elif defined(__SANITIZE_ADDRESS__)
  29. #define MEGDNN_TEST_ASAN 1
  30. #else
  31. #define MEGDNN_TEST_ASAN 0
  32. #endif
  33. // clang-format on
  34. namespace megdnn {
  35. namespace test {
  36. class CheckerHelper {
  37. // TensorLayoutArray and TensorValueArray should be protected in theory;
  38. // but g++-4.9 bugs handle access privilege wrongfully, so we change it
  39. // to public.
  40. public:
  41. using TensorValueArray = TensorNDArray;
  42. using TensorsConstriant = std::function<void(TensorValueArray& tensors)>;
  43. using ExtraOprImpl = std::function<void(const TensorNDArray&)>;
  44. using OutputCanonizer = std::function<void(const TensorValueArray&)>;
  45. static std::shared_ptr<TensorValueArray> alloc_tensors(
  46. Handle* handle, const TensorLayoutArray& layouts, size_t offset);
  47. Handle* handle() const { return m_handle_cur; }
  48. protected:
  49. //! whether to use physically contiguous (i.e. default layout) for naive
  50. //! impl
  51. bool m_enable_contig_naive = false;
  52. bool m_prev_succ = true;
  53. const char* m_input_tensors_fpath = nullptr;
  54. thin_function<void()> m_expect_exec_fail;
  55. std::unique_ptr<Handle> m_handle_naive;
  56. Handle* m_handle_cur;
  57. std::unique_ptr<RNG> m_default_rng;
  58. std::unordered_map<size_t, RNG*> m_rng;
  59. std::unordered_map<size_t, DType> m_dtype;
  60. std::unordered_map<size_t, TensorFormat> m_fmt;
  61. float_t m_epsilon = 1e-3, m_max_avg_error = 1e-3,
  62. m_max_avg_biased_error = 1e-3;
  63. float_t m_perf_check_threshold = -1;
  64. bool m_perf_check = false;
  65. ExtraOprImpl m_extra_opr_impl;
  66. OutputCanonizer m_output_canonizer;
  67. TensorsConstriant m_tensor_constraint;
  68. bool no_naive_and_check = false;
  69. /**
  70. * the offset from the start of malloc memory
  71. *
  72. * \note alloc \p m_offset more memory when alloc memory for a tensor,
  73. * the start of tensor just begin at \p m_offset.
  74. * \warning current only used for opencl
  75. */
  76. size_t m_offset = 0;
  77. CheckerHelper(Handle* handle, bool check_dispatch = true);
  78. ~CheckerHelper() noexcept;
  79. using OprExec = std::function<void(const TensorValueArray&)>;
  80. void do_exec_with_testcases(const TensorValueArray& testcase_in,
  81. const TensorValueArray& testcase_out,
  82. const OprExec& exec_opr);
  83. void do_exec(const TensorLayoutArray& user_layouts,
  84. const TensorLayoutArray& deduced_layouts,
  85. const OprExec& exec_naive, const OprExec& exec_opr);
  86. void enable_contig_naive() { m_enable_contig_naive = true; }
  87. void copy_tensors_to_device(const TensorValueArray& dest,
  88. const TensorValueArray& src);
  89. void copy_tensors_from_device(const TensorValueArray& dest,
  90. const TensorValueArray& src);
  91. private:
  92. std::shared_ptr<TensorValueArray> m_tensors_naive;
  93. void init_naive_values();
  94. void check_tensors(const TensorValueArray& expected,
  95. const TensorValueArray& computed);
  96. };
  97. template <typename Opr, typename Proxy = OprProxy<Opr>>
  98. class Checker : public CheckerHelper {
  99. public:
  100. using Param = typename Opr::Param;
  101. using BeforeExecCallback =
  102. std::function<void(Opr*, const TensorValueArray&)>;
  103. Checker(Handle* handle, bool check_dispatch = true)
  104. : CheckerHelper(handle, check_dispatch), m_param(Param()) {}
  105. TensorLayoutArray make_layouts(const TensorShapeArray& shapes) {
  106. TensorLayoutArray layouts(shapes.size());
  107. for (size_t i = 0; i < shapes.size(); ++i) {
  108. DType dt = (m_dtype.find(i) != m_dtype.end() ? m_dtype[i]
  109. : dtype::Float32());
  110. if (m_fmt.find(i) == m_fmt.end()) {
  111. layouts[i] = TensorLayout(shapes[i], dt);
  112. layouts[i].init_contiguous_stride();
  113. } else
  114. layouts[i] = TensorLayout(shapes[i], dt, m_fmt[i]);
  115. }
  116. return layouts;
  117. }
  118. /*!
  119. * \brief execute opr on current param/dtype/rng config
  120. * \param shapes input/output shapes, which would be passed as
  121. * arguments to Opr::deduce_layout
  122. *
  123. * Checker would construct TensorLayout vectors from shapes and dtypes,
  124. * and call exec(TensorLayoutArray &).
  125. */
  126. Checker& exec(const TensorShapeArray& shapes) {
  127. exec(make_layouts(shapes));
  128. return *this;
  129. }
  130. void exec(TensorLayoutArray layouts);
  131. //! explicitly require argument to be TensorShape
  132. Checker& execs(const TensorShapeArray& shapes) { return exec(shapes); }
  133. //! explicitly require argument to be TensorLayout
  134. Checker& execl(const TensorLayoutArray& layouts) {
  135. exec(layouts);
  136. return *this;
  137. }
  138. Checker& exect(const TensorValueArray& testcase_in,
  139. const TensorValueArray& testcase_out);
  140. Checker& set_param(Param param) {
  141. m_param = param;
  142. opr()->param() = param;
  143. return *this;
  144. }
  145. Checker& set_dtype(size_t idx, DType dtype) {
  146. m_dtype[idx] = dtype;
  147. return *this;
  148. }
  149. Checker& set_fmt(size_t idx, TensorFormat fmt) {
  150. m_fmt[idx] = fmt;
  151. return *this;
  152. }
  153. Checker& set_rng(size_t idx, RNG* rng) {
  154. m_rng[idx] = rng;
  155. return *this;
  156. }
  157. //! max error of a single element
  158. Checker& set_epsilon(dt_float32 epsilon) {
  159. m_epsilon = epsilon;
  160. m_max_avg_error = epsilon;
  161. m_max_avg_biased_error = epsilon;
  162. return *this;
  163. }
  164. //! max average error; defaults to epsilon
  165. Checker& set_max_avg_error(dt_float32 error) {
  166. m_max_avg_error = error;
  167. return *this;
  168. }
  169. //! max average biased error; defaults to epsilon
  170. Checker& set_max_avg_biased_error(dt_float32 error) {
  171. m_max_avg_biased_error = error;
  172. return *this;
  173. }
  174. Checker& set_offset(size_t offset) {
  175. m_offset = offset;
  176. return *this;
  177. }
  178. Checker& set_proxy(const Proxy& proxy) {
  179. m_naive_proxy = proxy;
  180. m_cur_proxy = proxy;
  181. return *this;
  182. }
  183. //! set_perf_check and set_perf_check_threshold control the
  184. //! performance checking behavior.
  185. //!
  186. //! If perf_check is on (default to off), the running time of the
  187. //! current operator and the naive operator would be measured and
  188. //! checked when calling exec.
  189. //! The accelerating ratio should be larger than perf_check_threshold,
  190. //! otherwise errors would be reported.
  191. //! perf_check_threshold must be set in advance since the default value
  192. //! (which is negative) is invalid.
  193. Checker& set_perf_check(bool perf_check) {
  194. m_perf_check = perf_check;
  195. return *this;
  196. }
  197. Checker& set_perf_check_threshold(float perf_check_threshold) {
  198. m_perf_check_threshold = perf_check_threshold;
  199. return *this;
  200. }
  201. //! load input tensors from file for next run
  202. Checker& load_input_tensors(const char* fpath) {
  203. m_input_tensors_fpath = fpath;
  204. return *this;
  205. }
  206. //! add another checker to ensure naive implementation is correct
  207. Checker& set_extra_opr_impl(const ExtraOprImpl& chk) {
  208. m_extra_opr_impl = chk;
  209. return *this;
  210. }
  211. //! set a callback to be invoked before executing the operator
  212. Checker& set_before_exec_callback(const BeforeExecCallback& cb) {
  213. m_before_exec_callback = cb;
  214. return *this;
  215. }
  216. Checker& reset_before_exec_callback() {
  217. m_before_exec_callback = nullptr;
  218. return *this;
  219. }
  220. //! set a tensors constraints function, for the purpose of manipulating
  221. //! tensors when testing.
  222. Checker& set_tensors_constraint(
  223. const TensorsConstriant& tensor_constraint) {
  224. m_tensor_constraint = tensor_constraint;
  225. return *this;
  226. }
  227. /*!
  228. * \brief set that exec() on opr should fail, so naive is not called and
  229. * exec() returns directly after opr is called.
  230. *
  231. * This is only valid for next exec() call. It is usually used for
  232. * testing megcore::AsyncErrorInfo.
  233. *
  234. * \param cb callback to be invoked after opr exec (so error would not
  235. * be passed to destructor)
  236. */
  237. Checker& set_expect_exec_fail(const thin_function<void()>& cb) {
  238. m_expect_exec_fail = cb;
  239. return *this;
  240. }
  241. /*!
  242. * \brief set a function to canonize the outputs
  243. *
  244. * For some oprs maybe multiple outputs can be accepted; we can use a
  245. * function to transform them into a canonized form before comparing.
  246. *
  247. * The arguments are tensors on CPU and should be modified in-place.
  248. */
  249. Checker& set_output_canonizer(OutputCanonizer canonizer) {
  250. m_output_canonizer = std::move(canonizer);
  251. return *this;
  252. }
  253. //! get the opr impl so setting other than param() can be modified
  254. Opr* opr() {
  255. if (!m_opr_cur) {
  256. m_opr_cur = m_handle_cur->create_operator<Opr>();
  257. }
  258. return m_opr_cur.get();
  259. }
  260. //! whether previous exec succeeds
  261. bool prev_succ() const { return m_prev_succ; }
  262. private:
  263. BeforeExecCallback m_before_exec_callback;
  264. Param m_param;
  265. Proxy m_naive_proxy, m_cur_proxy;
  266. std::unique_ptr<Opr> m_opr_cur;
  267. };
  268. ::testing::AssertionResult __assert_tensor_eq(
  269. const char* expr0, const char* expr1, const char* expr_maxerr,
  270. const char* expr_maxerr_avg, const char* expr_maxerr_avg_biased,
  271. const TensorND& v0, const TensorND& v1, float maxerr, float maxerr_avg,
  272. float maxerr_avg_biased);
  273. #define MEGDNN_ASSERT_TENSOR_EQ_EPS_AVG(v0, v1, maxerr, maxerr_avg, \
  274. maxerr_avg_biased) \
  275. ASSERT_PRED_FORMAT5(::megdnn::test::__assert_tensor_eq, v0, v1, maxerr, \
  276. maxerr_avg, maxerr_avg_biased)
  277. #define MEGDNN_ASSERT_TENSOR_EQ_EPS(v0, v1, maxerr) \
  278. MEGDNN_ASSERT_TENSOR_EQ_EPS_AVG(v0, v1, maxerr, maxerr, maxerr)
  279. #define MEGDNN_ASSERT_TENSOR_EQ(v0, v1) \
  280. MEGDNN_ASSERT_TENSOR_EQ_EPS(v0, v1, 1e-3)
  281. template <typename Opr, typename Proxy>
  282. void Checker<Opr, Proxy>::exec(TensorLayoutArray layouts) {
  283. auto opr_naive = m_handle_naive->create_operator<Opr>();
  284. auto opr_relayout = m_handle_naive->create_operator<RelayoutForward>();
  285. auto opr_cur = this->opr();
  286. opr_naive->param() = m_param;
  287. opr_cur->param() = m_param;
  288. m_naive_proxy.deduce_layout(opr_naive.get(), layouts);
  289. auto exec_naive = [this, &opr_naive, &layouts,
  290. &opr_relayout](const TensorValueArray& values) {
  291. TensorValueArray contig_values = values;
  292. TensorValueArray real_values = values;
  293. std::shared_ptr<TensorValueArray> tensors_naive_contig_storage;
  294. if (m_enable_contig_naive) {
  295. TensorLayoutArray contig_layouts;
  296. for (auto&& layout : layouts) {
  297. contig_layouts.emplace_back(TensorLayout{
  298. static_cast<const TensorShape&>(layout), layout.dtype});
  299. }
  300. m_naive_proxy.deduce_layout(opr_naive.get(), contig_layouts);
  301. tensors_naive_contig_storage = alloc_tensors(
  302. m_handle_naive.get(), contig_layouts, m_offset);
  303. contig_values = *tensors_naive_contig_storage;
  304. //! relayout value to the contig_values
  305. for (size_t i = 0; i < contig_values.size(); ++i) {
  306. if (real_values[i].layout.ndim == 0)
  307. continue;
  308. real_values[i].layout.format = {};
  309. opr_relayout->exec(real_values[i], contig_values[i],
  310. m_handle_naive.get());
  311. }
  312. }
  313. m_naive_proxy.exec(opr_naive.get(), contig_values);
  314. if (m_enable_contig_naive) {
  315. //! relayout to the values
  316. for (size_t i = 0; i < contig_values.size(); ++i) {
  317. if (real_values[i].layout.ndim == 0)
  318. continue;
  319. opr_relayout->exec(contig_values[i], real_values[i],
  320. m_handle_naive.get());
  321. }
  322. }
  323. };
  324. auto exec_opr = [this, opr_cur](const TensorValueArray& values) {
  325. if (m_before_exec_callback) {
  326. m_before_exec_callback(opr_cur, values);
  327. }
  328. m_cur_proxy.exec(opr_cur, values);
  329. };
  330. auto user_layouts = layouts;
  331. do_exec(user_layouts, layouts, exec_naive, exec_opr);
  332. }
  333. template <typename Opr, typename Proxy>
  334. Checker<Opr, Proxy>& Checker<Opr, Proxy>::exect(
  335. const TensorValueArray& testcase_in,
  336. const TensorValueArray& testcase_out) {
  337. auto opr_cur = this->opr();
  338. opr_cur->param() = m_param;
  339. auto exec_opr = [this, opr_cur](const TensorValueArray& values) {
  340. if (m_before_exec_callback) {
  341. m_before_exec_callback(opr_cur, values);
  342. }
  343. m_cur_proxy.exec(opr_cur, values);
  344. };
  345. do_exec_with_testcases(testcase_in, testcase_out, exec_opr);
  346. return *this;
  347. }
  348. template <typename T, typename U>
  349. TensorND TensorValue(const TensorShape& shape, T dtype,
  350. std::initializer_list<U> values) {
  351. TensorND tensor;
  352. tensor.layout = {shape, dtype};
  353. tensor.raw_ptr =
  354. static_cast<dt_byte*>(malloc(tensor.layout.span().dist_byte()));
  355. megdnn_assert(values.size() == tensor.layout.total_nr_elems(), "%zu == %zu",
  356. values.size(), tensor.layout.total_nr_elems());
  357. auto ptr = tensor.ptr<typename DTypeTrait<T>::ctype>();
  358. for (const auto& v : values) {
  359. *ptr++ = typename DTypeTrait<T>::ctype(v);
  360. }
  361. return tensor;
  362. }
  363. template <typename T, typename U>
  364. TensorND TensorValueLowbit4(const TensorShape& shape, T dtype,
  365. std::vector<U> values) {
  366. TensorND tensor;
  367. tensor.layout = {shape, dtype};
  368. tensor.raw_ptr =
  369. static_cast<dt_byte*>(malloc(tensor.layout.span().dist_byte()));
  370. megdnn_assert(values.size() == tensor.layout.total_nr_elems());
  371. auto ptr = static_cast<U*>(tensor.raw_ptr);
  372. for (size_t i = 0; i < values.size(); i += 2) {
  373. U val0 = values[i], val1 = values[i + 1];
  374. megdnn_assert(val0 >= DTypeTrait<T>::min());
  375. megdnn_assert(val1 <= DTypeTrait<T>::max());
  376. ptr[i / 2] = (val0 & 0xF) | (val1 << 4);
  377. }
  378. return tensor;
  379. }
  380. class Testcase : public SmallVector<TensorND> {
  381. public:
  382. using SmallVector<TensorND>::SmallVector;
  383. ~Testcase() {
  384. // Suicide
  385. for (const auto& tensor : *this) {
  386. if (tensor.raw_ptr) {
  387. free(tensor.raw_ptr);
  388. }
  389. }
  390. }
  391. Testcase(const Testcase&) = delete;
  392. Testcase operator=(const Testcase&) = delete;
  393. };
  394. struct ExecutionPolicyAlgoName {
  395. std::string name;
  396. std::vector<ExecutionPolicyAlgoName> sub_policy_names;
  397. ExecutionPolicyAlgoName(const char* name) : name{name} {}
  398. ExecutionPolicyAlgoName(
  399. const char* name,
  400. const std::vector<ExecutionPolicyAlgoName>& sub_policy)
  401. : name{name}, sub_policy_names{sub_policy} {}
  402. };
  403. /*!
  404. * \brief a callable to check that given algorithm is used for heuristic
  405. * \param require_algo if its value is true, then requires
  406. * get_algorithm_heuristic() to return the expected algo; otherwise the
  407. * expected algo must exist in get_all_algorithms() and it would be set to
  408. * be used
  409. */
  410. template <class Opr, typename OprAlgoProxy = OprAlgoProxy<Opr>>
  411. class AlgoChecker {
  412. public:
  413. AlgoChecker(ExecutionPolicyAlgoName name, bool* require_algo = nullptr)
  414. : m_policy_name{name}, m_require_algo{require_algo} {}
  415. AlgoChecker(ExecutionPolicy policy, bool* require_algo = nullptr)
  416. : m_policy{policy}, m_require_algo{require_algo} {}
  417. static ExecutionPolicy construct_execution_policy_from_name(
  418. const ExecutionPolicyAlgoName& policy_name,
  419. const TensorLayoutArray& layouts, const std::string& param,
  420. Handle* handle) {
  421. ExecutionPolicy ret;
  422. megdnn_assert(layouts.size() == OprTrait<Opr>::arity);
  423. auto opr = handle->create_operator<Opr>();
  424. opr->param() =
  425. Algorithm::deserialize_read_pod<typename Opr::Param>(param);
  426. for (auto algo_info :
  427. AlgoProxy<Opr, OprTrait<Opr>::arity>::get_all_algorithms_info(
  428. opr.get(), layouts)) {
  429. if (std::regex_match(
  430. algo_info.desc.name,
  431. std::regex("(" + policy_name.name + ")(.*)"))) {
  432. ret.algo = algo_info.desc;
  433. } else {
  434. continue;
  435. }
  436. Algorithm* algo = opr->get_algorithm_from_desc(algo_info.desc);
  437. std::vector<Algorithm::SearchItem>&& sub_items =
  438. algo->get_subopr_list(layouts, opr.get());
  439. if (sub_items.size() != policy_name.sub_policy_names.size()) {
  440. printf("Invalid sub_policy_names in %s, expected %zu but got "
  441. "%zu\n",
  442. algo_info.desc.name.c_str(), sub_items.size(),
  443. policy_name.sub_policy_names.size());
  444. return {};
  445. }
  446. FOREACH_OPR_TYPE_DISPATCH(sub_items, {
  447. ExecutionPolicy policy =
  448. AlgoChecker<_Opr>::construct_execution_policy_from_name(
  449. policy_name.sub_policy_names[_item_idx],
  450. _item.layouts, _item.param, handle);
  451. ret.sub_policy.push_back(policy);
  452. });
  453. return ret;
  454. }
  455. return ret;
  456. }
  457. void operator()(Opr* opr, const CheckerHelper::TensorValueArray& arr) {
  458. TensorLayoutArray layouts;
  459. for (auto&& val : arr) {
  460. layouts.push_back(val.layout);
  461. }
  462. if (!m_policy_name.name.empty()) {
  463. std::string param_str;
  464. Algorithm::serialize_write_pod(opr->param(), param_str);
  465. m_policy = construct_execution_policy_from_name(
  466. m_policy_name, layouts, param_str, opr->handle());
  467. ASSERT_TRUE(m_policy.algo.valid())
  468. << "algorithm " << m_policy_name.name << " not found";
  469. }
  470. if (m_require_algo && *m_require_algo) {
  471. auto algo =
  472. OprAlgoProxy::get_algorithm_info_heuristic(opr, layouts);
  473. ASSERT_STREQ(opr->get_algorithm_from_desc(m_policy.algo)->name(),
  474. algo.desc.name.c_str());
  475. } else {
  476. opr->execution_policy() = m_policy;
  477. }
  478. }
  479. private:
  480. ExecutionPolicyAlgoName m_policy_name;
  481. ExecutionPolicy m_policy;
  482. bool* m_require_algo;
  483. };
  484. template <typename Opr>
  485. void construct_sub_execution_policy_heuristic(ExecutionPolicy& policy,
  486. const TensorLayoutArray& layouts,
  487. const std::string& param,
  488. Handle* handle) {
  489. megdnn_assert(layouts.size() == OprTrait<Opr>::arity);
  490. auto opr = handle->create_operator<Opr>();
  491. opr->param() = Algorithm::deserialize_read_pod<typename Opr::Param>(param);
  492. if (!policy.algo.valid()) {
  493. policy.algo = AlgoProxy<Opr, OprTrait<Opr>::arity>::
  494. get_algorithm_info_heuristic(opr.get(), layouts).desc;
  495. }
  496. Algorithm* algo = opr->get_algorithm_from_desc(policy.algo);
  497. std::vector<Algorithm::SearchItem>&& sub_items =
  498. algo->get_subopr_list(layouts, opr.get());
  499. FOREACH_OPR_TYPE_DISPATCH(sub_items, {
  500. policy.sub_policy.push_back(ExecutionPolicy{});
  501. construct_sub_execution_policy_heuristic<_Opr>(
  502. policy.sub_policy.back(), _item.layouts, _item.param,
  503. handle);
  504. });
  505. }
  506. } // namespace test
  507. } // namespace megdnn
  508. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台