You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_tensor.py 9.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import numpy as np
  10. import pytest
  11. import megengine.functional as F
  12. from megengine import Buffer, Parameter, is_cuda_available, tensor
  13. from megengine.core.tensor.utils import astensor1d
  14. from megengine.test import assertTensorClose
  15. def _default_compare_fn(x, y):
  16. assertTensorClose(x.numpy(), y)
  17. def opr_test(cases, func, compare_fn=_default_compare_fn, ref_fn=None, **kwargs):
  18. """
  19. func: the function to run opr.
  20. compare_fn: the function to compare the result and expected, use assertTensorClose if None.
  21. ref_fn: the function to generate expected data, should assign output if None.
  22. cases: the list which have dict element, the list length should be 2 for dynamic shape test.
  23. and the dict should have input,
  24. and should have output if ref_fn is None.
  25. should use list for multiple inputs and outputs for each case.
  26. kwargs: The additional kwargs for opr func.
  27. simple examples:
  28. dtype = np.float32
  29. cases = [{"input": [10, 20]}, {"input": [20, 30]}]
  30. opr_test(cases,
  31. F.eye,
  32. ref_fn=lambda n, m: np.eye(n, m).astype(dtype),
  33. dtype=dtype)
  34. """
  35. def check_results(results, expected):
  36. if not isinstance(results, tuple):
  37. results = (results,)
  38. for r, e in zip(results, expected):
  39. compare_fn(r, e)
  40. def get_param(cases, idx):
  41. case = cases[idx]
  42. inp = case.get("input", None)
  43. outp = case.get("output", None)
  44. if inp is None:
  45. raise ValueError("the test case should have input")
  46. if not isinstance(inp, list):
  47. inp = (inp,)
  48. else:
  49. inp = tuple(inp)
  50. if ref_fn is not None and callable(ref_fn):
  51. outp = ref_fn(*inp)
  52. if outp is None:
  53. raise ValueError("the test case should have output or reference function")
  54. if not isinstance(outp, list):
  55. outp = (outp,)
  56. else:
  57. outp = tuple(outp)
  58. return inp, outp
  59. if len(cases) == 0:
  60. raise ValueError("should give one case at least")
  61. if not callable(func):
  62. raise ValueError("the input func should be callable")
  63. inp, outp = get_param(cases, 0)
  64. inp_tensor = [tensor(inpi) for inpi in inp]
  65. results = func(*inp_tensor, **kwargs)
  66. check_results(results, outp)
  67. def test_eye():
  68. dtype = np.float32
  69. cases = [{"input": [10, 20]}, {"input": [20, 30]}]
  70. for case in cases:
  71. assertTensorClose(
  72. F.eye(case["input"], dtype=dtype).numpy(),
  73. np.eye(*case["input"]).astype(dtype),
  74. )
  75. def test_concat():
  76. def get_data_shape(length: int):
  77. return (length, 2, 3)
  78. data1 = np.random.random(get_data_shape(5)).astype("float32")
  79. data2 = np.random.random(get_data_shape(6)).astype("float32")
  80. data3 = np.random.random(get_data_shape(7)).astype("float32")
  81. def run(data1, data2):
  82. return F.concat([data1, data2])
  83. cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
  84. opr_test(cases, run, ref_fn=lambda x, y: np.concatenate([x, y]))
  85. def test_stack():
  86. data1 = np.random.random((3, 2, 2)).astype("float32")
  87. data2 = np.random.random((3, 2, 2)).astype("float32")
  88. data3 = np.random.random((3, 2, 2)).astype("float32")
  89. cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
  90. for ai in range(3):
  91. def run(data1, data2):
  92. return F.stack([data1, data2], axis=ai)
  93. opr_test(cases, run, ref_fn=lambda x, y: np.stack([x, y], axis=ai))
  94. def test_split():
  95. data = np.random.random((2, 3, 4, 5)).astype(np.float32)
  96. mge_out1 = F.split(tensor(data), 2, axis=3)
  97. mge_out2 = F.split(tensor(data), [3, 5], axis=3)
  98. np_out = np.split(data, [3, 5], axis=3)
  99. np.testing.assert_equal(mge_out1[0].numpy(), mge_out2[0].numpy())
  100. np.testing.assert_equal(mge_out1[0].numpy(), np_out[0])
  101. def test_reshape():
  102. x = np.arange(6, dtype="float32")
  103. xx = tensor(x)
  104. y = x.reshape(1, 2, 3)
  105. for shape in [
  106. (1, 2, 3),
  107. (1, -1, 3),
  108. (1, tensor(-1), 3),
  109. np.array([1, -1, 3], dtype="int32"),
  110. tensor([1, -1, 3]),
  111. ]:
  112. yy = F.reshape(xx, shape)
  113. np.testing.assert_equal(yy.numpy(), y)
  114. def test_squeeze():
  115. x = np.arange(6, dtype="float32").reshape(1, 2, 3, 1)
  116. xx = tensor(x)
  117. for axis in [None, 3, -4, (3, -4)]:
  118. y = np.squeeze(x, axis)
  119. yy = F.squeeze(xx, axis)
  120. np.testing.assert_equal(y, yy.numpy())
  121. def test_expand_dims():
  122. x = np.arange(6, dtype="float32").reshape(2, 3)
  123. xx = tensor(x)
  124. for axis in [2, -3, (3, -4), (1, -4)]:
  125. y = np.expand_dims(x, axis)
  126. yy = F.expand_dims(xx, axis)
  127. np.testing.assert_equal(y, yy.numpy())
  128. def test_elemwise_dtype_promotion():
  129. x = np.random.rand(2, 3).astype("float32")
  130. y = np.random.rand(1, 3).astype("float16")
  131. xx = tensor(x)
  132. yy = tensor(y)
  133. z = xx * yy
  134. np.testing.assert_equal(z.numpy(), x * y)
  135. z = xx + y
  136. np.testing.assert_equal(z.numpy(), x + y)
  137. z = x - yy
  138. np.testing.assert_equal(z.numpy(), x - y)
  139. def test_linspace():
  140. cases = [
  141. {"input": [1, 9, 9]},
  142. {"input": [3, 10, 8]},
  143. ]
  144. opr_test(
  145. cases,
  146. F.linspace,
  147. ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
  148. )
  149. cases = [
  150. {"input": [9, 1, 9]},
  151. {"input": [10, 3, 8]},
  152. ]
  153. opr_test(
  154. cases,
  155. F.linspace,
  156. ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
  157. )
  158. def test_arange():
  159. cases = [
  160. {"input": [1, 9, 1]},
  161. {"input": [2, 10, 2]},
  162. ]
  163. opr_test(
  164. cases,
  165. F.arange,
  166. ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
  167. )
  168. cases = [
  169. {"input": [9, 1, -1]},
  170. {"input": [10, 2, -2]},
  171. ]
  172. opr_test(
  173. cases,
  174. F.arange,
  175. ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
  176. )
  177. cases = [
  178. {"input": [9.3, 1.2, -0.5]},
  179. {"input": [10.3, 2.1, -1.7]},
  180. ]
  181. opr_test(
  182. cases,
  183. F.arange,
  184. ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
  185. )
  186. def test_round():
  187. data1_shape = (15,)
  188. data2_shape = (25,)
  189. data1 = np.random.random(data1_shape).astype(np.float32)
  190. data2 = np.random.random(data2_shape).astype(np.float32)
  191. cases = [{"input": data1}, {"input": data2}]
  192. opr_test(cases, F.round, ref_fn=np.round)
  193. def test_broadcast():
  194. input1_shape = (20, 30)
  195. output1_shape = (30, 20, 30)
  196. data1 = np.random.random(input1_shape).astype(np.float32)
  197. input2_shape = (10, 20)
  198. output2_shape = (20, 10, 20)
  199. data2 = np.random.random(input2_shape).astype(np.float32)
  200. def compare_fn(x, y):
  201. assert x.numpy().shape == y
  202. cases = [
  203. {"input": [data1, output1_shape], "output": output1_shape},
  204. {"input": [data2, output2_shape], "output": output2_shape},
  205. ]
  206. opr_test(cases, F.broadcast, compare_fn=compare_fn)
  207. def test_utils_astensor1d():
  208. reference = tensor(0)
  209. # literal
  210. x = [1, 2, 3]
  211. for dtype in [None, "float32"]:
  212. xx = astensor1d(x, reference, dtype=dtype)
  213. assert type(xx) is tensor
  214. np.testing.assert_equal(xx.numpy(), x)
  215. # numpy array
  216. x = np.asarray([1, 2, 3], dtype="int32")
  217. for dtype in [None, "float32"]:
  218. xx = astensor1d(x, reference, dtype=dtype)
  219. assert type(xx) is tensor
  220. np.testing.assert_equal(xx.numpy(), x.astype(dtype) if dtype else x)
  221. # tensor
  222. x = tensor([1, 2, 3], dtype="int32")
  223. for dtype in [None, "float32"]:
  224. xx = astensor1d(x, reference, dtype=dtype)
  225. assert type(xx) is tensor
  226. np.testing.assert_equal(xx.numpy(), x.numpy())
  227. # mixed
  228. x = [1, tensor(2), 3]
  229. for dtype in [None, "float32"]:
  230. xx = astensor1d(x, reference, dtype=dtype)
  231. assert type(xx) is tensor
  232. np.testing.assert_equal(xx.numpy(), [1, 2, 3])
  233. def test_device():
  234. x = tensor([1, 2, 3], dtype="float32")
  235. y1 = F.eye(x.shape, dtype="float32")
  236. y2 = F.eye(x.shape, dtype="float32", device=None)
  237. np.testing.assert_almost_equal(y1.numpy(), y2.numpy())
  238. y3 = F.eye(x.shape, dtype="float32", device="xpux")
  239. y4 = F.eye(x.shape, dtype="float32", device=x.device.to_c())
  240. np.testing.assert_almost_equal(y3.numpy(), y4.numpy())
  241. y5 = F.full((3, 2), 4, device=x.device)
  242. y6 = F.full((3, 2), 4, device="xpux")
  243. np.testing.assert_almost_equal(y5.numpy(), y6.numpy())

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台