You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_network.cpp 52 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474
  1. /**
  2. * \file test/test_network.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "lite_build_config.h"
  12. #if LITE_BUILD_WITH_MGE
  13. #include "./test_common.h"
  14. #include "megbrain/tensor.h"
  15. #ifndef WIN32
  16. #include <dirent.h>
  17. #include <string.h>
  18. #endif
  19. #include <chrono>
  20. #include <memory>
  21. #include <random>
  22. #include <unordered_map>
  23. using namespace lite;
  24. namespace {
  25. class CheckAllocator : public lite::Allocator {
  26. public:
  27. //! allocate memory of size in the given device with the given align
  28. void* allocate(LiteDeviceType device, int, size_t size, size_t align) override {
  29. LITE_ASSERT(device == LiteDeviceType::LITE_CPU);
  30. m_nr_left++;
  31. m_nr_allocated++;
  32. #ifdef WIN32
  33. return _aligned_malloc(size, align);
  34. #elif defined(__ANDROID__) || defined(ANDROID)
  35. return memalign(align, size);
  36. #else
  37. void* ptr = nullptr;
  38. auto err = posix_memalign(&ptr, align, size);
  39. mgb_assert(!err, "failed to malloc %zubytes with align %zu", size, align);
  40. return ptr;
  41. #endif
  42. };
  43. //! free the memory pointed by ptr in the given device
  44. void free(LiteDeviceType device, int, void* ptr) override {
  45. m_nr_left--;
  46. LITE_ASSERT(device == LiteDeviceType::LITE_CPU);
  47. #ifdef WIN32
  48. _aligned_free(ptr);
  49. #else
  50. ::free(ptr);
  51. #endif
  52. };
  53. std::atomic_size_t m_nr_left{0};
  54. std::atomic_size_t m_nr_allocated{0};
  55. };
  56. } // namespace
  57. TEST(TestNetWork, Basic) {
  58. Config config;
  59. auto lite_tensor = get_input_data("./input_data.npy");
  60. std::string model_path = "./shufflenet.mge";
  61. auto result_lite = mgelite_lar(model_path, config, "data", lite_tensor);
  62. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  63. compare_lite_tensor<float>(result_lite, result_mgb);
  64. }
  65. TEST(TestNetWork, RefCount) {
  66. Config config;
  67. ASSERT_EQ(NetworkRefCount::Instance().refcount(), 0);
  68. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  69. ASSERT_EQ(NetworkRefCount::Instance().refcount(), 1);
  70. std::shared_ptr<Network> network_s = std::make_shared<Network>(config);
  71. ASSERT_EQ(NetworkRefCount::Instance().refcount(), 2);
  72. network.reset();
  73. ASSERT_EQ(NetworkRefCount::Instance().refcount(), 1);
  74. network_s.reset();
  75. ASSERT_EQ(NetworkRefCount::Instance().refcount(), 0);
  76. }
  77. TEST(TestNetWork, SetDeviceId) {
  78. Config config;
  79. auto lite_tensor = get_input_data("./input_data.npy");
  80. std::string model_path = "./shufflenet.mge";
  81. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  82. network->set_device_id(4);
  83. network->load_model(model_path);
  84. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  85. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  86. network->forward();
  87. network->wait();
  88. ASSERT_EQ(input_tensor->get_device_id(), 4);
  89. ASSERT_EQ(output_tensor->get_device_id(), 4);
  90. }
  91. TEST(TestNetWork, GetAllName) {
  92. Config config;
  93. auto lite_tensor = get_input_data("./input_data.npy");
  94. std::string model_path = "./shufflenet.mge";
  95. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  96. network->load_model(model_path);
  97. auto input_names = network->get_all_input_name();
  98. auto output_names = network->get_all_output_name();
  99. auto output_tensor = network->get_output_tensor(0);
  100. auto out_layout = output_tensor->get_layout();
  101. ASSERT_EQ(out_layout.ndim, 2);
  102. ASSERT_EQ(out_layout.shapes[0], 1);
  103. ASSERT_EQ(out_layout.shapes[1], 1000);
  104. ASSERT_EQ(input_names.size(), 1);
  105. ASSERT_EQ(output_names.size(), 1);
  106. ASSERT_TRUE(input_names[0] == "data");
  107. ASSERT_TRUE(output_names[0] == "TRUE_DIV(EXP[12065],reduce0[12067])[12077]");
  108. }
  109. TEST(TestNetWork, GetAllIoInfoAhead) {
  110. Config config;
  111. std::string model_path = "./shufflenet.mge";
  112. auto ios = Runtime::get_model_io_info(model_path);
  113. FILE* fin = fopen(model_path.c_str(), "rb");
  114. ASSERT_TRUE(fin);
  115. fseek(fin, 0, SEEK_END);
  116. size_t size = ftell(fin);
  117. fseek(fin, 0, SEEK_SET);
  118. void* ptr = malloc(size);
  119. std::shared_ptr<void> buf{ptr, ::free};
  120. auto nr = fread(buf.get(), 1, size, fin);
  121. LITE_ASSERT(nr == size);
  122. fclose(fin);
  123. auto ios_mem = Runtime::get_model_io_info(ptr, size);
  124. ASSERT_EQ(ios.inputs.size(), ios_mem.inputs.size());
  125. ASSERT_EQ(ios.inputs.size(), 1);
  126. ASSERT_EQ(ios.outputs.size(), ios_mem.outputs.size());
  127. ASSERT_EQ(ios.outputs.size(), 1);
  128. ASSERT_TRUE(ios.inputs[0].name == "data");
  129. ASSERT_TRUE(ios.outputs[0].name == "TRUE_DIV(EXP[12065],reduce0[12067])[12077]");
  130. ASSERT_TRUE(ios_mem.inputs[0].name == "data");
  131. ASSERT_TRUE(
  132. ios_mem.outputs[0].name == "TRUE_DIV(EXP[12065],reduce0[12067])[12077]");
  133. ASSERT_EQ(ios.inputs[0].config_layout.ndim, 4);
  134. ASSERT_EQ(ios.inputs[0].config_layout.shapes[1], 3);
  135. ASSERT_EQ(ios.inputs[0].config_layout.shapes[2], 224);
  136. ASSERT_EQ(ios.outputs[0].config_layout.ndim, 2);
  137. ASSERT_EQ(ios.outputs[0].config_layout.shapes[0], 1);
  138. ASSERT_EQ(ios.outputs[0].config_layout.shapes[1], 1000);
  139. ASSERT_EQ(ios_mem.inputs[0].config_layout.ndim, 4);
  140. ASSERT_EQ(ios_mem.inputs[0].config_layout.shapes[1], 3);
  141. ASSERT_EQ(ios_mem.inputs[0].config_layout.shapes[2], 224);
  142. ASSERT_EQ(ios_mem.outputs[0].config_layout.ndim, 2);
  143. ASSERT_EQ(ios_mem.outputs[0].config_layout.shapes[0], 1);
  144. ASSERT_EQ(ios_mem.outputs[0].config_layout.shapes[1], 1000);
  145. }
  146. TEST(TestNetWork, LoadFBSModel) {
  147. Config config;
  148. std::string model_path = "./ax.mge";
  149. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  150. network->load_model(model_path);
  151. auto output_tensor = network->get_output_tensor(0);
  152. auto out_layout = output_tensor->get_layout();
  153. ASSERT_EQ(out_layout.ndim, 4);
  154. ASSERT_EQ(out_layout.shapes[0], 1);
  155. ASSERT_EQ(out_layout.shapes[1], 1);
  156. ASSERT_EQ(out_layout.shapes[2], 40);
  157. ASSERT_EQ(out_layout.shapes[3], 180);
  158. }
  159. TEST(TestNetWork, BasicInplaceAndSingleThreadAffinity) {
  160. Config config;
  161. auto lite_tensor = get_input_data("./input_data.npy");
  162. std::string model_path = "./shufflenet.mge";
  163. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  164. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  165. Runtime::set_cpu_inplace_mode(network);
  166. network->load_model(model_path);
  167. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  168. int affinity_set = false;
  169. Runtime::set_runtime_thread_affinity(network, [&affinity_set](int id) {
  170. ASSERT_EQ(id, 0);
  171. affinity_set = true;
  172. });
  173. auto src_ptr = lite_tensor->get_memory_ptr();
  174. auto src_layout = lite_tensor->get_layout();
  175. input_tensor->reset(src_ptr, src_layout);
  176. //! inplace mode not support async mode
  177. ASSERT_THROW(network->set_async_callback([]() {}), std::exception);
  178. network->forward();
  179. network->wait();
  180. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  181. ASSERT_EQ(affinity_set, true);
  182. compare_lite_tensor<float>(output_tensor, result_mgb);
  183. }
  184. namespace {
  185. void test_multi_thread(bool multi_thread_compnode) {
  186. Config config;
  187. auto lite_tensor = get_input_data("./input_data.npy");
  188. std::string model_path = "./shufflenet.mge";
  189. size_t nr_threads = 2;
  190. std::vector<std::thread::id> thread_ids(nr_threads);
  191. auto runner = [&](size_t i) {
  192. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  193. Runtime::set_cpu_inplace_mode(network);
  194. if (multi_thread_compnode) {
  195. Runtime::set_cpu_threads_number(network, 2);
  196. }
  197. network->load_model(model_path);
  198. Runtime::set_runtime_thread_affinity(network, [&thread_ids, i](int id) {
  199. if (id == 0) {
  200. thread_ids[i] = std::this_thread::get_id();
  201. }
  202. });
  203. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  204. auto src_ptr = lite_tensor->get_memory_ptr();
  205. auto src_layout = lite_tensor->get_layout();
  206. input_tensor->reset(src_ptr, src_layout);
  207. network->forward();
  208. network->wait();
  209. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  210. };
  211. std::vector<std::thread> threads;
  212. for (size_t i = 0; i < nr_threads; i++) {
  213. threads.emplace_back(runner, i);
  214. }
  215. for (size_t i = 0; i < nr_threads; i++) {
  216. threads[i].join();
  217. }
  218. ASSERT_NE(thread_ids[0], thread_ids[1]);
  219. }
  220. } // namespace
  221. TEST(TestNetWork, InplaceAndUserMultithreadThread) {
  222. test_multi_thread(false);
  223. }
  224. TEST(TestNetWork, InplaceAndMultithread) {
  225. test_multi_thread(true);
  226. }
  227. TEST(TestNetWork, NetworkShareWeights) {
  228. Config config;
  229. auto lite_tensor = get_input_data("./input_data.npy");
  230. std::string model_path = "./shufflenet.mge";
  231. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  232. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  233. network->load_model(model_path);
  234. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  235. std::shared_ptr<Network> network2 = std::make_shared<Network>(config);
  236. Runtime::set_cpu_inplace_mode(network2);
  237. Runtime::shared_weight_with_network(network2, network);
  238. std::shared_ptr<Tensor> input_tensor2 = network2->get_input_tensor(0);
  239. auto src_ptr = lite_tensor->get_memory_ptr();
  240. auto src_layout = lite_tensor->get_layout();
  241. input_tensor->reset(src_ptr, src_layout);
  242. input_tensor2->reset(src_ptr, src_layout);
  243. ASSERT_NE(input_tensor, input_tensor2);
  244. network->forward();
  245. network->wait();
  246. network2->forward();
  247. network2->wait();
  248. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  249. std::shared_ptr<Tensor> output_tensor2 = network2->get_output_tensor(0);
  250. ASSERT_NE(output_tensor->get_memory_ptr(), output_tensor2->get_memory_ptr());
  251. compare_lite_tensor<float>(output_tensor, result_mgb);
  252. compare_lite_tensor<float>(output_tensor2, result_mgb);
  253. }
  254. TEST(TestNetWork, SharedRuntimeMem) {
  255. Config config;
  256. auto lite_tensor = get_input_data("./input_data.npy");
  257. std::string model_path = "./shufflenet.mge";
  258. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  259. std::shared_ptr<Network> network_src = std::make_shared<Network>(config);
  260. std::shared_ptr<Network> network_dst = std::make_shared<Network>(config);
  261. Runtime::share_runtime_memory_with(network_dst, network_src);
  262. network_src->load_model(model_path);
  263. network_dst->load_model(model_path);
  264. }
  265. TEST(TestNetWork, UserAllocator) {
  266. auto allocator = std::make_shared<CheckAllocator>();
  267. {
  268. Config config;
  269. auto lite_tensor = get_input_data("./input_data.npy");
  270. std::string model_path = "./shufflenet.mge";
  271. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  272. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  273. Runtime::set_memory_allocator(network, allocator);
  274. network->load_model(model_path);
  275. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  276. auto src_ptr = lite_tensor->get_memory_ptr();
  277. auto src_layout = lite_tensor->get_layout();
  278. input_tensor->reset(src_ptr, src_layout);
  279. network->forward();
  280. network->wait();
  281. ASSERT_GE(allocator->m_nr_allocated, 1);
  282. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  283. compare_lite_tensor<float>(output_tensor, result_mgb);
  284. }
  285. ASSERT_EQ(allocator->m_nr_left, 0);
  286. }
  287. TEST(TestNetWork, BasicMultiThread) {
  288. Config config;
  289. auto lite_tensor = get_input_data("./input_data.npy");
  290. std::string model_path = "./shufflenet.mge";
  291. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  292. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  293. Runtime::set_cpu_threads_number(network, 2);
  294. network->load_model(model_path);
  295. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  296. auto src_ptr = lite_tensor->get_memory_ptr();
  297. auto src_layout = lite_tensor->get_layout();
  298. input_tensor->reset(src_ptr, src_layout);
  299. network->forward();
  300. network->wait();
  301. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  302. compare_lite_tensor<float>(output_tensor, result_mgb);
  303. }
  304. TEST(TestNetWork, ThreadAffinity) {
  305. size_t nr_threads = 4;
  306. Config config;
  307. auto lite_tensor = get_input_data("./input_data.npy");
  308. std::string model_path = "./shufflenet.mge";
  309. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  310. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  311. Runtime::set_cpu_threads_number(network, nr_threads);
  312. ASSERT_THROW(
  313. Runtime::set_runtime_thread_affinity(network, [](int) {}), std::exception);
  314. network->load_model(model_path);
  315. std::vector<std::thread::id> thread_ids(nr_threads);
  316. auto affinity = [&](int id) { thread_ids[id] = std::this_thread::get_id(); };
  317. Runtime::set_runtime_thread_affinity(network, affinity);
  318. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  319. auto src_ptr = lite_tensor->get_memory_ptr();
  320. auto src_layout = lite_tensor->get_layout();
  321. input_tensor->reset(src_ptr, src_layout);
  322. network->forward();
  323. network->wait();
  324. for (size_t i = 0; i < nr_threads; i++) {
  325. for (size_t j = i + 1; j < nr_threads; j++) {
  326. ASSERT_NE(thread_ids[i], thread_ids[j]);
  327. }
  328. }
  329. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  330. compare_lite_tensor<float>(output_tensor, result_mgb);
  331. }
  332. TEST(TestNetWork, BasicCryptAes) {
  333. Config config;
  334. auto lite_tensor = get_input_data("./input_data.npy");
  335. std::string model_path = "./shufflenet.mge";
  336. std::string model_crypt_path = "./shufflenet_crypt_aes.mge";
  337. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  338. config.bare_model_cryption_name = "AES_default";
  339. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  340. compare_lite_tensor<float>(result_lite, result_mgb);
  341. }
  342. TEST(TestNetWork, BasicCryptRc4) {
  343. Config config;
  344. auto lite_tensor = get_input_data("./input_data.npy");
  345. std::string model_path = "./shufflenet.mge";
  346. std::string model_crypt_path = "./shufflenet_crypt_rc4.mge";
  347. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  348. config.bare_model_cryption_name = "RC4_default";
  349. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  350. compare_lite_tensor<float>(result_lite, result_mgb);
  351. }
  352. TEST(TestNetWork, PackedCryptRc4) {
  353. Config config;
  354. auto lite_tensor = get_input_data("./input_data.npy");
  355. std::string model_path = "./shufflenet.mge";
  356. std::string model_crypt_path = "./test_packed_model_rc4.lite";
  357. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  358. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  359. compare_lite_tensor<float>(result_lite, result_mgb);
  360. }
  361. TEST(TestNetWork, BasicCryptSfRc4) {
  362. Config config;
  363. auto lite_tensor = get_input_data("./input_data.npy");
  364. std::string model_path = "./shufflenet.mge";
  365. std::string model_crypt_path = "./shufflenet_crypt_sfrc4.mge";
  366. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  367. config.bare_model_cryption_name = "SIMPLE_FAST_RC4_default";
  368. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  369. compare_lite_tensor<float>(result_lite, result_mgb);
  370. }
  371. TEST(TestNetWork, ResetInput) {
  372. Config config;
  373. auto tensor = get_input_data("./input_data.npy");
  374. std::string model_path = "./shufflenet.mge";
  375. std::string input_name = "data";
  376. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  377. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  378. network->load_model(model_path);
  379. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  380. auto src_ptr = tensor->get_memory_ptr();
  381. auto src_layout = tensor->get_layout();
  382. input_tensor->reset(src_ptr, src_layout);
  383. network->forward();
  384. network->wait();
  385. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  386. compare_lite_tensor<float>(output_tensor, result_mgb);
  387. }
  388. TEST(TestNetWork, ChangeInputShape) {
  389. Config config;
  390. auto tensor = get_input_data("./input_data.npy");
  391. std::string model_path = "./shufflenet.mge";
  392. std::string input_name = "data";
  393. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  394. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  395. network->load_model(model_path);
  396. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  397. auto src_layout = Layout{{2, 3, 200, 200}, 4, LiteDataType::LITE_FLOAT};
  398. input_tensor->set_layout(src_layout);
  399. std::shared_ptr<Tensor> input_tensor2 = network->get_io_tensor(input_name);
  400. //! Check memory is equal
  401. ASSERT_EQ(input_tensor->get_memory_ptr(), input_tensor2->get_memory_ptr());
  402. network->forward();
  403. network->wait();
  404. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  405. auto output_layout = output_tensor->get_layout();
  406. ASSERT_EQ(output_layout.shapes[0], 2);
  407. ASSERT_EQ(output_layout.shapes[1], 1000);
  408. }
  409. TEST(TestNetWork, ResetOutput) {
  410. Config config;
  411. auto tensor = get_input_data("./input_data.npy");
  412. std::string model_path = "./shufflenet.mge";
  413. std::string input_name = "data";
  414. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  415. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  416. network->load_model(model_path);
  417. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  418. auto src_ptr = tensor->get_memory_ptr();
  419. auto src_layout = tensor->get_layout();
  420. input_tensor->reset(src_ptr, src_layout);
  421. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  422. auto result_tensor = std::make_shared<Tensor>(
  423. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  424. void* out_data = result_tensor->get_memory_ptr();
  425. output_tensor->reset(out_data, result_tensor->get_layout());
  426. network->forward();
  427. network->wait();
  428. compare_lite_tensor<float>(output_tensor, result_mgb);
  429. }
  430. namespace {
  431. void test_output_no_copy(int record) {
  432. Config config;
  433. config.options.force_output_use_user_specified_memory = true;
  434. config.options.comp_node_seq_record_level = record;
  435. auto tensor = get_input_data("./input_data.npy");
  436. std::string model_path = "./shufflenet.mge";
  437. std::string input_name = "data";
  438. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  439. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  440. network->load_model(model_path);
  441. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  442. auto src_ptr = tensor->get_memory_ptr();
  443. auto src_layout = tensor->get_layout();
  444. input_tensor->reset(src_ptr, src_layout);
  445. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  446. size_t times = 5;
  447. std::vector<std::shared_ptr<Tensor>> result_tensors;
  448. for (size_t i = 0; i < times; i++) {
  449. auto tmp = std::make_shared<Tensor>(
  450. LiteDeviceType::LITE_CPU,
  451. Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  452. result_tensors.push_back(tmp);
  453. }
  454. for (size_t i = 0; i < times; i++) {
  455. void* out_data = result_tensors[i]->get_memory_ptr();
  456. output_tensor->reset(out_data, result_tensors[i]->get_layout());
  457. network->forward();
  458. network->wait();
  459. ASSERT_EQ(output_tensor->get_memory_ptr(), out_data);
  460. compare_lite_tensor<float>(output_tensor, result_mgb);
  461. }
  462. for (size_t i = 0; i < times; i++) {
  463. compare_lite_tensor<float>(result_tensors[i], result_mgb);
  464. }
  465. }
  466. void test_input_no_copy(int record) {
  467. Config config;
  468. config.options.force_output_use_user_specified_memory = true;
  469. config.options.comp_node_seq_record_level = record;
  470. std::string model_path = "./shufflenet.mge";
  471. std::string input_name = "data";
  472. Layout layout_in{{1, 3, 224, 224}, 4};
  473. std::vector<std::shared_ptr<Tensor>> inputs;
  474. std::vector<std::shared_ptr<Tensor>> outputs;
  475. for (int i = 0; i < 3; i++) {
  476. auto tmp_in = std::make_shared<Tensor>(LiteDeviceType::LITE_CPU, layout_in);
  477. auto ptr = static_cast<float*>(tmp_in->get_memory_ptr());
  478. for (size_t id = 0; id < 2 * 224 * 224; id++) {
  479. ptr[id] = i + 1;
  480. }
  481. inputs.push_back(tmp_in);
  482. outputs.push_back(mgb_lar(model_path, config, input_name, tmp_in));
  483. }
  484. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  485. network->load_model(model_path);
  486. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  487. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  488. for (int i = 0; i < 3; i++) {
  489. auto ptr = inputs[i]->get_memory_ptr();
  490. input_tensor->reset(ptr, layout_in);
  491. auto tmp_out = std::make_shared<Tensor>(
  492. LiteDeviceType::LITE_CPU,
  493. Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  494. output_tensor->reset(tmp_out->get_memory_ptr(), output_tensor->get_layout());
  495. network->forward();
  496. network->wait();
  497. compare_lite_tensor<float>(output_tensor, outputs[i]);
  498. }
  499. }
  500. void test_io_no_copy_ax(std::string model_name, int record = 1) {
  501. std::string model_path = model_name;
  502. std::vector<std::string> input_names, output_names;
  503. std::vector<std::vector<std::shared_ptr<Tensor>>> inputs;
  504. std::vector<std::vector<std::shared_ptr<Tensor>>> outputs;
  505. Config config;
  506. config.options.graph_opt_level = 0;
  507. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  508. network->load_model(model_path);
  509. input_names = network->get_all_input_name();
  510. output_names = network->get_all_output_name();
  511. // prepare test data
  512. for (int i = 0; i < 3; i++) {
  513. std::vector<std::shared_ptr<Tensor>> net_inputs;
  514. std::vector<std::shared_ptr<Tensor>> net_outputs;
  515. for (size_t j = 0; j < input_names.size(); j++) {
  516. auto in_tesnor = network->get_io_tensor(input_names[j]);
  517. auto in_layout = in_tesnor->get_layout();
  518. auto tmp_in = std::make_shared<Tensor>(LiteDeviceType::LITE_CPU, in_layout);
  519. auto size = in_tesnor->get_tensor_total_size_in_byte() /
  520. in_layout.get_elem_size();
  521. if (in_layout.data_type == LiteDataType::LITE_INT16) {
  522. auto ptr = static_cast<short*>(tmp_in->get_memory_ptr());
  523. for (size_t id = 0; id < size; id++) {
  524. ptr[id] = i + 1;
  525. }
  526. } else if (in_layout.data_type == LiteDataType::LITE_UINT8) {
  527. auto ptr = static_cast<uint8_t*>(tmp_in->get_memory_ptr());
  528. for (size_t id = 0; id < size; id++) {
  529. ptr[id] = i + 1;
  530. }
  531. }
  532. net_inputs.push_back(tmp_in);
  533. in_tesnor->copy_from(*tmp_in);
  534. }
  535. inputs.push_back(net_inputs);
  536. network->forward();
  537. network->wait();
  538. for (size_t j = 0; j < output_names.size(); j++) {
  539. auto out_tesnor = network->get_io_tensor(output_names[j]);
  540. auto out_layout = out_tesnor->get_layout();
  541. auto tmp_out =
  542. std::make_shared<Tensor>(LiteDeviceType::LITE_CPU, out_layout);
  543. tmp_out->copy_from(*out_tesnor);
  544. net_outputs.push_back(tmp_out);
  545. }
  546. outputs.push_back(net_outputs);
  547. }
  548. config.options.force_output_use_user_specified_memory = true;
  549. config.options.comp_node_seq_record_level = record;
  550. config.options.const_shape = true;
  551. config.options.graph_opt_level = 2;
  552. std::shared_ptr<Network> network_record = std::make_shared<Network>(config);
  553. network_record->load_model(model_path);
  554. for (int i = 0; i < 3; i++) {
  555. for (size_t j = 0; j < inputs[i].size(); j++) {
  556. auto input_tensor = network_record->get_io_tensor(input_names[j]);
  557. input_tensor->reset(
  558. inputs[i][j]->get_memory_ptr(), inputs[i][j]->get_layout());
  559. }
  560. std::vector<std::shared_ptr<Tensor>> net_outputs;
  561. for (size_t j = 0; j < outputs[i].size(); j++) {
  562. auto output_tensor = network_record->get_io_tensor(output_names[j]);
  563. auto tmp_out = std::make_shared<Tensor>(
  564. LiteDeviceType::LITE_CPU, output_tensor->get_layout());
  565. output_tensor->reset(
  566. tmp_out->get_memory_ptr(), output_tensor->get_layout());
  567. net_outputs.push_back(tmp_out);
  568. }
  569. network_record->forward();
  570. network_record->wait();
  571. for (size_t j = 0; j < outputs[i].size(); j++) {
  572. auto output_tensor = network_record->get_io_tensor(output_names[j]);
  573. compare_lite_tensor<float>(output_tensor, outputs[i][j]);
  574. }
  575. }
  576. printf("profile the model %s run\n", model_path.c_str());
  577. std::vector<std::shared_ptr<Tensor>> net_outputs;
  578. for (size_t j = 0; j < outputs[0].size(); j++) {
  579. auto output_tensor = network_record->get_io_tensor(output_names[j]);
  580. auto tmp_out = std::make_shared<Tensor>(
  581. LiteDeviceType::LITE_CPU, output_tensor->get_layout());
  582. output_tensor->reset(tmp_out->get_memory_ptr(), output_tensor->get_layout());
  583. net_outputs.push_back(tmp_out);
  584. }
  585. lite::Timer timer("profile");
  586. for (int i = 0; i < 10; i++) {
  587. network_record->forward();
  588. network_record->wait();
  589. }
  590. auto sum_time = timer.get_used_time();
  591. printf("model %s used time average %f ms\n", model_path.c_str(), sum_time / 10);
  592. }
  593. } // namespace
  594. TEST(TestNetWork, OutputNoCopy) {
  595. test_output_no_copy(0);
  596. }
  597. TEST(TestNetWork, OutputNoCopyRecord) {
  598. test_output_no_copy(1);
  599. }
  600. TEST(TestNetWork, IONoCopy) {
  601. test_input_no_copy(0);
  602. }
  603. TEST(TestNetWork, IONoCopyRecord) {
  604. test_input_no_copy(1);
  605. }
  606. TEST(TestNetWork, IONoCopyRecordAx) {
  607. std::vector<std::string> file_names;
  608. #ifndef WIN32
  609. DIR* dirptr = NULL;
  610. struct dirent* dirp;
  611. std::string model_dir = "./ax_models";
  612. dirptr = opendir(model_dir.c_str());
  613. while (dirptr != NULL && (dirp = readdir(dirptr)) != NULL) {
  614. std::string file_name(dirp->d_name);
  615. if (file_name.find(".axe", 0) != std::string::npos) {
  616. file_names.push_back(model_dir + "/" + file_name);
  617. }
  618. }
  619. closedir(dirptr);
  620. #endif
  621. for (auto file_name : file_names) {
  622. printf("test model: %s\n", file_name.c_str());
  623. test_io_no_copy_ax(file_name);
  624. }
  625. }
  626. TEST(TestNetWork, OutputDynamicAlloc) {
  627. Config config;
  628. config.options.force_output_dynamic_alloc = true;
  629. auto tensor = get_input_data("./input_data.npy");
  630. std::string model_path = "./shufflenet.mge";
  631. std::string input_name = "data";
  632. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  633. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  634. network->load_model(model_path);
  635. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  636. auto src_ptr = tensor->get_memory_ptr();
  637. auto src_layout = tensor->get_layout();
  638. input_tensor->reset(src_ptr, src_layout);
  639. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  640. size_t times = 5;
  641. for (size_t i = 0; i < times; i++) {
  642. network->forward();
  643. network->wait();
  644. compare_lite_tensor<float>(output_tensor, result_mgb);
  645. }
  646. }
  647. TEST(TestNetWork, AsyncExec) {
  648. Config config;
  649. config.options.var_sanity_check_first_run = false;
  650. auto tensor = get_input_data("./input_data.npy");
  651. std::string model_path = "./shufflenet.mge";
  652. std::string input_name = "data";
  653. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  654. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  655. network->load_model(model_path);
  656. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  657. auto src_ptr = tensor->get_memory_ptr();
  658. auto src_layout = tensor->get_layout();
  659. input_tensor->reset(src_ptr, src_layout);
  660. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  661. auto result_tensor = std::make_shared<Tensor>(
  662. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  663. void* out_data = result_tensor->get_memory_ptr();
  664. output_tensor->reset(out_data, result_tensor->get_layout());
  665. //! set async mode and callback
  666. volatile bool finished = false;
  667. network->set_async_callback([&finished]() { finished = true; });
  668. network->forward();
  669. size_t count = 0;
  670. while (finished == false) {
  671. count++;
  672. }
  673. ASSERT_GT(count, 0);
  674. compare_lite_tensor<float>(output_tensor, result_mgb);
  675. }
  676. TEST(TestNetWork, CPUDeviceInput) {
  677. auto tensor = get_input_data("./input_data.npy");
  678. Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
  679. std::string model_path = "./shufflenet.mge";
  680. std::string input_name = "data";
  681. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  682. NetworkIO IO;
  683. bool is_host = false;
  684. IO.inputs.push_back({input_name, is_host});
  685. std::shared_ptr<Network> network = std::make_shared<Network>(IO);
  686. network->load_model(model_path);
  687. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  688. auto src_ptr = tensor->get_memory_ptr();
  689. input_tensor->reset(src_ptr, layout);
  690. network->forward();
  691. network->wait();
  692. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  693. compare_lite_tensor<float>(output_tensor, result_mgb);
  694. }
  695. TEST(TestNetWork, ShareTensorWith) {
  696. auto tensor = get_input_data("./input_data.npy");
  697. std::string model_path = "./shufflenet.mge";
  698. std::string input_name = "data";
  699. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  700. std::shared_ptr<Network> network = std::make_shared<Network>();
  701. network->load_model(model_path);
  702. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  703. input_tensor->share_memory_with(*tensor);
  704. network->forward();
  705. network->wait();
  706. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  707. compare_lite_tensor<float>(output_tensor, result_mgb);
  708. }
  709. TEST(TestNetWork, InputCallBack) {
  710. auto tensor = get_input_data("./input_data.npy");
  711. std::string model_path = "./shufflenet.mge";
  712. std::string input_name = "data";
  713. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  714. NetworkIO ios;
  715. bool is_host = false;
  716. ios.inputs.push_back({input_name, is_host});
  717. std::shared_ptr<Network> network = std::make_shared<Network>(ios);
  718. network->load_model(model_path);
  719. volatile bool finised_check_input = false;
  720. auto input_callback =
  721. [&tensor, &finised_check_input,
  722. input_name](const std::unordered_map<
  723. std::string, std::pair<IO, std::shared_ptr<Tensor>>>&
  724. input_map) {
  725. ASSERT_EQ(input_map.size(), 1);
  726. auto tensor_input = input_map.at(input_name).second;
  727. compare_lite_tensor<float>(tensor_input, tensor);
  728. finised_check_input = true;
  729. };
  730. network->set_start_callback(input_callback);
  731. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  732. input_tensor->share_memory_with(*tensor);
  733. network->forward();
  734. network->wait();
  735. ASSERT_TRUE(finised_check_input);
  736. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  737. compare_lite_tensor<float>(output_tensor, result_mgb);
  738. }
  739. TEST(TestNetWork, OutputCallBack) {
  740. auto tensor = get_input_data("./input_data.npy");
  741. std::string model_path = "./shufflenet.mge";
  742. std::string input_name = "data";
  743. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  744. std::shared_ptr<Network> network = std::make_shared<Network>();
  745. network->load_model(model_path);
  746. auto output_name = network->get_output_name(0);
  747. volatile bool finised_check_output = false;
  748. auto output_callback =
  749. [&result_mgb, &finised_check_output,
  750. output_name](const std::unordered_map<
  751. std::string, std::pair<IO, std::shared_ptr<Tensor>>>&
  752. output_map) {
  753. ASSERT_EQ(output_map.size(), 1);
  754. auto tensor_output = output_map.at(output_name).second;
  755. compare_lite_tensor<float>(tensor_output, result_mgb);
  756. finised_check_output = true;
  757. };
  758. network->set_finish_callback(output_callback);
  759. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  760. input_tensor->share_memory_with(*tensor);
  761. network->forward();
  762. network->wait();
  763. ASSERT_TRUE(finised_check_output);
  764. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  765. compare_lite_tensor<float>(output_tensor, result_mgb);
  766. }
  767. TEST(TestNetWork, OutputShapeOnly) {
  768. auto tensor = get_input_data("./input_data.npy");
  769. std::string model_path = "./shufflenet.mge";
  770. std::string input_name = "data";
  771. std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  772. NetworkIO IO;
  773. bool is_host = true;
  774. IO.outputs.push_back({output_name, is_host, LiteIOType::LITE_IO_SHAPE});
  775. Config config;
  776. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  777. network->load_model(model_path);
  778. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  779. std::shared_ptr<Tensor> output_tensor = network->get_io_tensor(output_name);
  780. auto src_ptr = tensor->get_memory_ptr();
  781. auto src_layout = tensor->get_layout();
  782. input_tensor->reset(src_ptr, src_layout);
  783. network->forward();
  784. network->wait();
  785. ASSERT_EQ(output_tensor->get_tensor_total_size_in_byte() / sizeof(float), 1000);
  786. }
  787. TEST(TestNetWork, ProfileIOdump) {
  788. auto tensor = get_input_data("./input_data.npy");
  789. std::string model_path = "./shufflenet.mge";
  790. std::string input_name = "data";
  791. NetworkIO IO;
  792. Config config;
  793. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  794. network->enable_profile_performance("./profile.json");
  795. network->load_model(model_path);
  796. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  797. auto src_ptr = tensor->get_memory_ptr();
  798. auto src_layout = tensor->get_layout();
  799. input_tensor->reset(src_ptr, src_layout);
  800. network->forward();
  801. network->wait();
  802. ASSERT_TRUE(fopen("./profile.json", "r"));
  803. Runtime::enable_io_txt_dump(network, "./io_txt_dump.txt");
  804. network->forward();
  805. network->wait();
  806. ASSERT_TRUE(fopen("./io_txt_dump.txt", "r"));
  807. }
  808. TEST(TestNetWork, LoadPackedModel) {
  809. auto tensor = get_input_data("./input_data.npy");
  810. std::string model_path = "./test_packed_model.lite";
  811. std::string input_name = "data";
  812. NetworkIO IO;
  813. Config config;
  814. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  815. network->load_model(model_path);
  816. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  817. auto src_ptr = tensor->get_memory_ptr();
  818. auto src_layout = tensor->get_layout();
  819. input_tensor->reset(src_ptr, src_layout);
  820. network->forward();
  821. network->wait();
  822. }
  823. TEST(TestNetWork, GlabalLayoutTransform) {
  824. auto tensor = get_input_data("./input_data.npy");
  825. std::string model_path = "./shufflenet.mge";
  826. std::string input_name = "data";
  827. std::string dump_model_name = "./shufflenet_after_trans.mge";
  828. NetworkIO IO;
  829. Config config;
  830. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  831. Runtime::enable_global_layout_transform(network);
  832. network->load_model(model_path);
  833. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  834. auto src_ptr = tensor->get_memory_ptr();
  835. auto src_layout = tensor->get_layout();
  836. input_tensor->reset(src_ptr, src_layout);
  837. Runtime::dump_layout_transform_model(network, dump_model_name);
  838. network->forward();
  839. network->wait();
  840. ASSERT_TRUE(fopen(dump_model_name.c_str(), "r"));
  841. remove(dump_model_name.c_str());
  842. }
  843. TEST(TestNetWork, GetDeviceType) {
  844. auto tensor = get_input_data("./input_data.npy");
  845. std::string model_path = "./shufflenet.mge";
  846. Config config;
  847. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  848. network->load_model(model_path);
  849. ASSERT_TRUE(network->get_device_type() == LiteDeviceType::LITE_CPU);
  850. }
  851. TEST(TestNetWork, GetModelExtraInfo) {
  852. std::string model_path = "./track_640_320_pack_model_rc4_with_info.lite";
  853. Config config;
  854. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  855. network->load_model(model_path);
  856. auto& extra_info = network->get_model_extra_info();
  857. ASSERT_TRUE(extra_info.size() > 0);
  858. printf("extra_info %s \n", extra_info.c_str());
  859. }
  860. #ifndef __IN_TEE_ENV__
  861. #if MGB_ENABLE_JSON
  862. TEST(TestNetWork, GetMemoryInfo) {
  863. Config config;
  864. auto lite_tensor = get_input_data("./input_data.npy");
  865. std::string model_path = "./shufflenet.mge";
  866. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  867. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  868. Runtime::set_cpu_threads_number(network, 2);
  869. network->load_model(model_path);
  870. network->get_static_memory_alloc_info();
  871. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  872. auto src_ptr = lite_tensor->get_memory_ptr();
  873. auto src_layout = lite_tensor->get_layout();
  874. input_tensor->reset(src_ptr, src_layout);
  875. network->forward();
  876. network->wait();
  877. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  878. compare_lite_tensor<float>(output_tensor, result_mgb);
  879. }
  880. #endif
  881. #endif
  882. #if LITE_WITH_CUDA
  883. TEST(TestNetWork, BasicDevice) {
  884. auto lite_tensor = get_input_data("./input_data.npy");
  885. Config config;
  886. config.device_type = LiteDeviceType::LITE_CUDA;
  887. std::string model_path = "./shufflenet.mge";
  888. auto result_lite = mgelite_lar(model_path, config, "data", lite_tensor);
  889. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  890. compare_lite_tensor<float>(result_lite, result_mgb);
  891. }
  892. TEST(TestNetWork, DeviceInput) {
  893. auto tensor = get_input_data("./input_data.npy");
  894. Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
  895. std::string model_path = "./shufflenet.mge";
  896. std::string input_name = "data";
  897. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  898. NetworkIO IO;
  899. bool is_host = false;
  900. IO.inputs.push_back({input_name, is_host});
  901. Config config;
  902. config.device_type = LiteDeviceType::LITE_CUDA;
  903. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  904. network->load_model(model_path);
  905. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  906. auto tensor_cuda = Tensor(LiteDeviceType::LITE_CUDA, layout);
  907. tensor_cuda.copy_from(*tensor);
  908. auto src_ptr = tensor_cuda.get_memory_ptr();
  909. input_tensor->reset(src_ptr, layout);
  910. network->forward();
  911. network->wait();
  912. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  913. compare_lite_tensor<float>(output_tensor, result_mgb);
  914. }
  915. TEST(TestNetWork, ChangeInputShapeDevice) {
  916. Config config;
  917. auto tensor = get_input_data("./input_data.npy");
  918. std::string model_path = "./shufflenet.mge";
  919. std::string input_name = "data";
  920. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  921. config.device_type = LiteDeviceType::LITE_CUDA;
  922. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  923. network->load_model(model_path);
  924. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  925. auto src_layout = Layout{{2, 3, 200, 200}, 4, LiteDataType::LITE_FLOAT};
  926. input_tensor->set_layout(src_layout);
  927. std::shared_ptr<Tensor> input_tensor2 = network->get_io_tensor(input_name);
  928. //! Check memory is equal
  929. ASSERT_EQ(input_tensor->get_memory_ptr(), input_tensor2->get_memory_ptr());
  930. network->forward();
  931. network->wait();
  932. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  933. auto output_layout = output_tensor->get_layout();
  934. ASSERT_EQ(output_layout.shapes[0], 2);
  935. ASSERT_EQ(output_layout.shapes[1], 1000);
  936. }
  937. TEST(TestNetWork, DeviceOutput) {
  938. auto tensor = get_input_data("./input_data.npy");
  939. std::string model_path = "./shufflenet.mge";
  940. std::string input_name = "data";
  941. std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  942. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  943. NetworkIO IO;
  944. bool is_host = false;
  945. IO.outputs.push_back({output_name, is_host});
  946. Config config;
  947. config.device_type = LiteDeviceType::LITE_CUDA;
  948. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  949. network->load_model(model_path);
  950. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  951. std::shared_ptr<Tensor> output_tensor_cuda = network->get_io_tensor(output_name);
  952. auto src_ptr = tensor->get_memory_ptr();
  953. auto src_layout = tensor->get_layout();
  954. input_tensor->reset(src_ptr, src_layout);
  955. network->forward();
  956. network->wait();
  957. auto output_tensor = std::make_shared<Tensor>();
  958. output_tensor->copy_from(*output_tensor_cuda);
  959. compare_lite_tensor<float>(output_tensor, result_mgb);
  960. }
  961. TEST(TestNetWork, WrongIONameDevice) {
  962. auto tensor = get_input_data("./input_data.npy");
  963. Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
  964. std::string model_path = "./shufflenet.mge";
  965. std::string input_name = "data";
  966. std::string input_name_wrong = "data0";
  967. std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  968. std::string output_name_wrong = "w_TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  969. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  970. NetworkIO IO;
  971. bool is_host = false;
  972. IO.inputs.push_back({input_name, is_host});
  973. IO.outputs.push_back({output_name, is_host});
  974. IO.outputs.push_back({output_name_wrong, is_host});
  975. Config config;
  976. config.device_type = LiteDeviceType::LITE_CUDA;
  977. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  978. network->load_model(model_path);
  979. auto tensor_cuda = Tensor(LiteDeviceType::LITE_CUDA, layout);
  980. tensor_cuda.copy_from(*tensor);
  981. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  982. auto src_ptr = tensor_cuda.get_memory_ptr();
  983. auto src_layout = tensor_cuda.get_layout();
  984. input_tensor->reset(src_ptr, src_layout);
  985. std::shared_ptr<Tensor> output_tensor_cuda = network->get_io_tensor(output_name);
  986. network->forward();
  987. network->wait();
  988. auto output_tensor = std::make_shared<Tensor>();
  989. output_tensor->copy_from(*output_tensor_cuda);
  990. compare_lite_tensor<float>(output_tensor, result_mgb);
  991. }
  992. TEST(TestNetWork, ConfigIONameDevice) {
  993. std::string model_path = "./model.mgb";
  994. NetworkIO IO;
  995. bool is_host = false;
  996. IO.outputs.push_back({"clsfy", is_host});
  997. Config config;
  998. config.device_type = LiteDeviceType::LITE_CUDA;
  999. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  1000. network->compute_only_configured_output();
  1001. network->load_model(model_path);
  1002. ASSERT_EQ(network->get_all_output_name().size(), 1);
  1003. ASSERT_EQ(network->get_all_output_name()[0], "clsfy");
  1004. std::shared_ptr<Network> network2 = std::make_shared<Network>(config, IO);
  1005. network2->load_model(model_path);
  1006. ASSERT_EQ(network2->get_all_output_name().size(), 2);
  1007. }
  1008. TEST(TestNetWork, SetDeviceIdDeviceTest) {
  1009. #if LITE_WITH_CUDA
  1010. if (get_device_count(LITE_CUDA) <= 1)
  1011. return;
  1012. #endif
  1013. std::string model_path = "./model.mgb";
  1014. NetworkIO IO;
  1015. bool is_host = false;
  1016. IO.inputs.push_back({"data", is_host});
  1017. IO.outputs.push_back({"clsfy", is_host});
  1018. Config config;
  1019. config.device_type = LiteDeviceType::LITE_CUDA;
  1020. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  1021. network->set_device_id(1);
  1022. network->load_model(model_path);
  1023. auto inputs_names = network->get_all_input_name();
  1024. for (auto name : inputs_names) {
  1025. auto tensor = network->get_io_tensor(name);
  1026. ASSERT_EQ(tensor->get_device_id(), 1);
  1027. if (name == "idx") {
  1028. int* index_ptr = static_cast<int*>(tensor->get_memory_ptr());
  1029. for (int i = 0; i < 23; i++) {
  1030. index_ptr[i] = i % 3;
  1031. }
  1032. }
  1033. if (name == "landmark") {
  1034. float* landmakrk_ptr = static_cast<float*>(tensor->get_memory_ptr());
  1035. for (int i = 0; i < 23 * 18 * 2; i++) {
  1036. landmakrk_ptr[i] = 0.1f;
  1037. }
  1038. }
  1039. }
  1040. auto outputs_names = network->get_all_output_name();
  1041. for (auto name : outputs_names) {
  1042. auto tensor = network->get_io_tensor(name);
  1043. ASSERT_EQ(tensor->get_device_id(), 1);
  1044. }
  1045. network->forward();
  1046. network->wait();
  1047. }
  1048. TEST(TestNetWork, SetStreamIdDeviceTest) {
  1049. std::string model_path = "./model.mgb";
  1050. NetworkIO IO;
  1051. bool is_host = false;
  1052. IO.inputs.push_back({"data", is_host});
  1053. IO.outputs.push_back({"clsfy", is_host});
  1054. Config config;
  1055. config.device_type = LiteDeviceType::LITE_CUDA;
  1056. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  1057. network->set_stream_id(1);
  1058. network->load_model(model_path);
  1059. auto inputs_names = network->get_all_input_name();
  1060. for (auto name : inputs_names) {
  1061. auto tensor = network->get_io_tensor(name);
  1062. if (name == "idx") {
  1063. int* index_ptr = static_cast<int*>(tensor->get_memory_ptr());
  1064. for (int i = 0; i < 23; i++) {
  1065. index_ptr[i] = i % 3;
  1066. }
  1067. }
  1068. if (name == "landmark") {
  1069. float* landmakrk_ptr = static_cast<float*>(tensor->get_memory_ptr());
  1070. for (int i = 0; i < 23 * 18 * 2; i++) {
  1071. landmakrk_ptr[i] = 0.1f;
  1072. }
  1073. }
  1074. }
  1075. network->forward();
  1076. network->wait();
  1077. }
  1078. #if CUDART_VERSION >= 10000
  1079. TEST(TestNetWork, DeviceAsyncExec) {
  1080. auto tensor = get_input_data("./input_data.npy");
  1081. Config config;
  1082. config.device_type = LiteDeviceType::LITE_CUDA;
  1083. config.options.var_sanity_check_first_run = false;
  1084. std::string model_path = "./shufflenet.mge";
  1085. std::string input_name = "data";
  1086. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  1087. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  1088. network->load_model(model_path);
  1089. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  1090. auto src_ptr = tensor->get_memory_ptr();
  1091. auto src_layout = tensor->get_layout();
  1092. input_tensor->reset(src_ptr, src_layout);
  1093. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  1094. auto result_tensor = std::make_shared<Tensor>(
  1095. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  1096. void* out_data = result_tensor->get_memory_ptr();
  1097. output_tensor->reset(out_data, result_tensor->get_layout());
  1098. //! set async mode and callback
  1099. volatile bool finished = false;
  1100. network->set_async_callback([&finished]() { finished = true; });
  1101. network->forward();
  1102. size_t count = 0;
  1103. while (finished == false) {
  1104. count++;
  1105. }
  1106. ASSERT_GT(count, 0);
  1107. compare_lite_tensor<float>(output_tensor, result_mgb);
  1108. }
  1109. #endif
  1110. #endif
  1111. #if MGB_ATLAS || MGB_CAMBRICON
  1112. namespace {
  1113. void load_no_device(LiteDeviceType device_type, const std::string& model_path) {
  1114. lite::Config config;
  1115. config.device_type = device_type;
  1116. auto network = std::make_shared<lite::Network>(config);
  1117. network->load_model(model_path);
  1118. network->forward();
  1119. network->wait();
  1120. }
  1121. void load_device_input(
  1122. LiteDeviceType device_type, const std::string& model_path,
  1123. const std::vector<std::string>& inputs) {
  1124. lite::NetworkIO networkio;
  1125. lite::IO input_data_io = {};
  1126. input_data_io.name = inputs[0];
  1127. input_data_io.is_host = false;
  1128. networkio.inputs.emplace_back(input_data_io);
  1129. lite::IO input_input0_io = {};
  1130. input_input0_io.name = inputs[1];
  1131. input_input0_io.is_host = false;
  1132. networkio.inputs.emplace_back(input_input0_io);
  1133. lite::Config config;
  1134. config.device_type = device_type;
  1135. auto network = std::make_shared<lite::Network>(config, networkio);
  1136. network->load_model(model_path);
  1137. network->forward();
  1138. network->wait();
  1139. }
  1140. void load_device_id(
  1141. LiteDeviceType device_type, int device_id, const std::string& model_path) {
  1142. lite::Config config;
  1143. config.device_type = device_type;
  1144. auto network = std::make_shared<lite::Network>(config);
  1145. network->set_device_id(device_id);
  1146. network->load_model(model_path);
  1147. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  1148. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  1149. network->forward();
  1150. network->wait();
  1151. ASSERT_EQ(output_tensor->get_device_id(), device_id);
  1152. }
  1153. } // namespace
  1154. #endif
  1155. #if MGB_ATLAS
  1156. TEST(TestNetWork, AtlasLoadNoDevice) {
  1157. load_no_device(LiteDeviceType::LITE_DEVICE_DEFAULT, "./model_atlas.mgb");
  1158. }
  1159. TEST(TestNetWork, AtlasLoadDeviceInput) {
  1160. load_device_input(
  1161. LiteDeviceType::LITE_DEVICE_DEFAULT, "./model_atlas.mgb",
  1162. {"data", "input0"});
  1163. }
  1164. TEST(TestNetWork, AtlasLoadAtlas) {
  1165. load_no_device(LiteDeviceType::LITE_ATLAS, "./model_atlas.mgb");
  1166. }
  1167. TEST(TestNetWork, AtlasLoadAtlasDeviceInput) {
  1168. load_device_input(
  1169. LiteDeviceType::LITE_ATLAS, "./model_atlas.mgb", {"data", "input0"});
  1170. }
  1171. TEST(TestNetWork, AtlasDeviceID) {
  1172. load_device_id(LiteDeviceType::LITE_ATLAS, 1, "./model_atlas.mgb");
  1173. }
  1174. #endif
  1175. #if MGB_CAMBRICON
  1176. TEST(TestNetWork, CambriconLoadNoDevice) {
  1177. load_no_device(LiteDeviceType::LITE_DEVICE_DEFAULT, "./model_magicmind.mgb");
  1178. }
  1179. TEST(TestNetWork, CambriconLoadDeviceInput) {
  1180. load_device_input(
  1181. LiteDeviceType::LITE_DEVICE_DEFAULT, "./model_magicmind.mgb",
  1182. {"data", "input0"});
  1183. }
  1184. TEST(TestNetWork, CambriconLoadCambricon) {
  1185. load_no_device(LiteDeviceType::LITE_CAMBRICON, "./model_magicmind.mgb");
  1186. }
  1187. TEST(TestNetWork, CambriconLoadCambriconDeviceInput) {
  1188. load_device_input(
  1189. LiteDeviceType::LITE_CAMBRICON, "./model_magicmind.mgb",
  1190. {"data", "input0"});
  1191. }
  1192. TEST(TestNetWork, CambriconDeviceID) {
  1193. load_device_id(LiteDeviceType::LITE_CAMBRICON, 0, "./model_magicmind.mgb");
  1194. }
  1195. #endif
  1196. #endif
  1197. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}