You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_elemwise.py 10 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import numpy as np
  10. import pytest
  11. import megengine.functional as F
  12. import megengine.functional.elemwise as elemwise
  13. from megengine import tensor
  14. from megengine.core.tensor import dtype
  15. from megengine.functional.elemwise import Elemwise
  16. from megengine.jit import trace
  17. def test_abs():
  18. np.testing.assert_allclose(
  19. F.abs(tensor([-3.0, -4.0, -5.0])).numpy(),
  20. np.abs(np.array([-3.0, -4.0, -5.0], dtype=np.float32)),
  21. )
  22. np.testing.assert_allclose(F.abs(-3.0).numpy(), np.abs(np.float32(-3.0)))
  23. def test_elemwise_mode_string():
  24. for key, mode in vars(Elemwise.Mode).items():
  25. if isinstance(mode, Elemwise.Mode):
  26. assert key == mode
  27. assert Elemwise(mode=key) == Elemwise(mode=mode)
  28. def test_multiply():
  29. np.testing.assert_allclose(
  30. F.mul(-3.0, -4.0).numpy(), np.multiply(np.float32(-3.0), np.float32(-4.0))
  31. )
  32. np.testing.assert_allclose(
  33. F.mul(tensor([3.0, 4.0]), 4.0).numpy(),
  34. np.multiply(np.array([3.0, 4.0], dtype=np.float32), 4.0),
  35. )
  36. np.testing.assert_allclose(
  37. F.mul(4.0, tensor([3.0, 4.0])).numpy(),
  38. np.multiply(4.0, np.array([3.0, 4.0], dtype=np.float32)),
  39. )
  40. np.testing.assert_allclose(
  41. F.mul(tensor([3.0, 4.0]), tensor([3.0, 4.0])).numpy(),
  42. np.multiply(
  43. np.array([3.0, 4.0], dtype=np.float32),
  44. np.array([3.0, 4.0], dtype=np.float32),
  45. ),
  46. )
  47. def test_div():
  48. np.testing.assert_allclose(
  49. F.div(tensor([3.0, 4.0]), 2).numpy(),
  50. np.divide(np.array([3, 4], dtype=np.float32), 2),
  51. )
  52. np.testing.assert_allclose(
  53. (tensor([3, 4]) / 2).numpy(), np.divide(np.array([3, 4], dtype=np.float32), 2),
  54. )
  55. np.testing.assert_allclose(
  56. F.floor_div(tensor([-5.0, -7.0]), 2).numpy(),
  57. np.floor_divide(np.array([-5.0, -7.0], dtype=np.float32), 2),
  58. )
  59. np.testing.assert_allclose(
  60. (tensor([-5, -7]) // 2).numpy(),
  61. np.floor_divide(np.array([-5, -7], dtype=np.int32), 2),
  62. )
  63. np.testing.assert_allclose(
  64. (tensor([[5, 4, 3], [4, 2, 6]]) // [1, 2, 1]).numpy(),
  65. np.floor_divide(np.array([[5, 4, 3], [4, 2, 6]], dtype=np.int32), [1, 2, 1]),
  66. )
  67. def test_clamp():
  68. """Fix an issue when `lower` or `upper` is 0, it will be recognized as `False` and
  69. `F.clip` will fall into wrong conditions unexpectedly.
  70. """
  71. x = np.linspace(-6, 6, dtype="float32")
  72. np.testing.assert_allclose(
  73. F.clip(tensor(x) + 3, 0, 6).numpy(), np.clip(x + 3, 0, 6)
  74. )
  75. np.testing.assert_allclose(
  76. F.clip(tensor(x) - 3, -6, 0).numpy(), np.clip(x - 3, -6, 0)
  77. )
  78. def test_isnan():
  79. for case in [[1, float("nan"), 0]]:
  80. np.testing.assert_allclose(F.isnan(tensor(case)).numpy(), np.isnan(case))
  81. def test_isinf():
  82. for case in [[1, float("inf"), 0]]:
  83. np.testing.assert_allclose(F.isinf(tensor(case)).numpy(), np.isinf(case))
  84. def test_sign():
  85. for case in [[1, -1, 0]]:
  86. x = tensor(case)
  87. np.testing.assert_allclose(F.sign(x).numpy(), np.sign(case).astype(x.dtype))
  88. def test_cosh():
  89. np.random.seed(42)
  90. x = np.random.randn(100).astype("float32")
  91. y_np = np.cosh(x)
  92. y_mge = F.cosh(tensor(x)).numpy()
  93. np.testing.assert_allclose(y_np, y_mge, rtol=1e-5)
  94. def test_sinh():
  95. np.random.seed(42)
  96. x = np.random.randn(100).astype("float32")
  97. y_np = np.sinh(x)
  98. y_mge = F.sinh(tensor(x)).numpy()
  99. np.testing.assert_allclose(y_np, y_mge, rtol=1e-5)
  100. def test_asinh():
  101. np.random.seed(42)
  102. x = np.random.randn(100).astype("float32")
  103. y_np = np.arcsinh(x)
  104. y_mge = F.asinh(tensor(x)).numpy()
  105. np.testing.assert_almost_equal(y_np, y_mge, decimal=5)
  106. def test_acosh():
  107. x = np.arange(0, 10000).astype("float32") / 100 + 1
  108. y_np = np.arccosh(x)
  109. y_mge = F.acosh(tensor(x)).numpy()
  110. np.testing.assert_almost_equal(y_np, y_mge, decimal=6)
  111. def test_atanh():
  112. np.random.seed(42)
  113. x = np.random.rand(100).astype("float32") * 2 - 1
  114. y_np = np.arctanh(x)
  115. y_mge = F.atanh(tensor(x)).numpy()
  116. np.testing.assert_almost_equal(y_np, y_mge, decimal=5)
  117. def test_hswish():
  118. np.random.seed(42)
  119. x = np.random.randn(100).astype("float32")
  120. y_np = x * np.minimum(np.maximum(x + 3, 0), 6) / 6
  121. y_mge = F.hswish(tensor(x)).numpy()
  122. np.testing.assert_almost_equal(y_np, y_mge, decimal=6)
  123. def test_silu():
  124. x = np.array([-1.5, 0.0, 1.0, 1.5]).astype("float32")
  125. y_np = x / (1 + np.exp(-x))
  126. y_mge = F.silu(tensor(x)).numpy()
  127. np.testing.assert_almost_equal(y_np, y_mge, decimal=6)
  128. def test_hsigmoid():
  129. np.random.seed(42)
  130. x = np.random.randn(100).astype("float32")
  131. y_np = np.minimum(np.maximum(x + 3, 0), 6) / 6
  132. y_mge = F.hsigmoid(tensor(x)).numpy()
  133. np.testing.assert_almost_equal(y_np, y_mge, decimal=6)
  134. def test_logical_oprs():
  135. x = np.array([[True, False], [False, True]])
  136. y = np.array([[True, True], [False, False]])
  137. xx = tensor(x)
  138. yy = tensor(y)
  139. np.testing.assert_equal(~x, (F.logical_not(xx)).numpy())
  140. np.testing.assert_equal(x & y, F.logical_and(xx, yy).numpy())
  141. np.testing.assert_equal(x | y, F.logical_or(xx, yy).numpy())
  142. np.testing.assert_equal(x ^ y, F.logical_xor(xx, yy).numpy())
  143. def test_logaddexp():
  144. x = np.random.randn(2, 100)
  145. y = np.random.randn(2, 100)
  146. xx = tensor(x)
  147. yy = tensor(y)
  148. out_np = np.log(np.exp(x) + np.exp(y))
  149. out_mge = F.logaddexp(xx, yy)
  150. np.testing.assert_almost_equal(out_np, out_mge.numpy(), decimal=6)
  151. def test_qadd():
  152. inp_scale = 0.5
  153. outp_scale = 0.2
  154. x = np.arange(6).reshape(2, 3).astype("float32")
  155. y = np.arange(6).reshape(2, 3).astype("float32")
  156. x = tensor(x, dtype=dtype.qint8(inp_scale))
  157. y = tensor(y, dtype=dtype.qint8(inp_scale))
  158. result_mge = F.elemwise._elemwise_multi_type(
  159. x, y, mode="qadd", dtype=dtype.qint8(outp_scale)
  160. )
  161. result_mge = result_mge.astype("float32").numpy()
  162. result_expect = x.astype("float32").numpy() + y.astype("float32").numpy()
  163. np.testing.assert_almost_equal(result_mge, result_expect, decimal=6)
  164. def test_int32_input():
  165. x = tensor(np.array([1, 2, 3, 4, 5]), dtype="int32")
  166. for op_name in elemwise.__all__:
  167. op = getattr(elemwise, op_name)
  168. nargs = op.__code__.co_argcount
  169. if op_name == "clip":
  170. inp = (x, 0, 1)
  171. elif op_name.endswith("_shift"):
  172. inp = (x, 1)
  173. elif op_name.startswith("logical_"):
  174. continue
  175. else:
  176. inp = (x,) * nargs
  177. y = op(*inp)
  178. y.numpy()
  179. @pytest.mark.parametrize("is_trace", [True, False])
  180. def test_empty_tensor(is_trace):
  181. binary_func = []
  182. unary_func = []
  183. for op_name in elemwise.__all__:
  184. op = getattr(elemwise, op_name)
  185. nargs = op.__code__.co_argcount
  186. if op_name == "clip":
  187. unary_func.append(["clip", lambda x, f=op: f(x, lower=0, upper=1)])
  188. elif op_name.endswith("_shift"):
  189. unary_func.append(
  190. [op_name, lambda x, f=op: f(tensor(x.numpy(), dtype="int32"), 1)]
  191. )
  192. elif op_name.startswith("logical_"): # logical_xxx op only accept boolean type
  193. if nargs == 1:
  194. unary_func.append(
  195. [op_name, lambda x, f=op: f(tensor(x.numpy(), dtype="bool"))]
  196. )
  197. else:
  198. assert nargs == 2
  199. binary_func.append(
  200. [
  201. op_name,
  202. lambda x, y, f=op: f(
  203. tensor(x.numpy(), dtype="bool"),
  204. tensor(y.numpy(), dtype="bool"),
  205. ),
  206. ]
  207. )
  208. elif nargs == 1:
  209. unary_func.append([op_name, op])
  210. elif nargs == 2:
  211. binary_func.append([op_name, op])
  212. else:
  213. raise NotImplementedError("nargs {}".format(nargs))
  214. def run_test(func, args, ref_shape, is_trace, sym=False):
  215. args = [tensor(t, dtype="float32") for t in args]
  216. if is_trace:
  217. func = trace(symbolic=sym)(func)
  218. for _ in range(3):
  219. out = func(*args)
  220. assert out.numpy().shape == ref_shape
  221. else:
  222. out = func(*args)
  223. assert out.numpy().shape == ref_shape, out.numpy().shape
  224. inps = [
  225. np.array([]).astype("float32"),
  226. np.random.randn(2, 0, 3).astype("float32"),
  227. 123,
  228. ]
  229. for op_name, op in unary_func:
  230. if is_trace:
  231. for sym in [True, False]:
  232. run_test(op, [inps[0],], inps[0].shape, True, sym)
  233. run_test(op, [inps[1],], inps[1].shape, True, sym)
  234. else:
  235. run_test(op, [inps[0],], inps[0].shape, False)
  236. run_test(op, [inps[1],], inps[1].shape, False)
  237. for op_name, op in binary_func:
  238. if is_trace:
  239. for sym in [True, False]:
  240. run_test(op, [inps[0], inps[0]], (inps[0] + inps[0]).shape, True, sym)
  241. run_test(op, [inps[1], inps[1]], (inps[1] + inps[1]).shape, True, sym)
  242. run_test(op, [inps[0], inps[2]], (inps[0] + inps[2]).shape, True, sym)
  243. run_test(op, [inps[1], inps[2]], (inps[1] + inps[2]).shape, True, sym)
  244. else:
  245. run_test(op, [inps[0], inps[0]], (inps[0] + inps[0]).shape, False)
  246. run_test(op, [inps[1], inps[1]], (inps[1] + inps[1]).shape, False)
  247. run_test(op, [inps[0], inps[2]], (inps[0] + inps[2]).shape, False)
  248. run_test(op, [inps[1], inps[2]], (inps[1] + inps[2]).shape, False)