You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

parampack.py 5.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import collections
  10. from typing import Iterable, Optional
  11. import numpy as np
  12. from ..core import Parameter, Tensor
  13. from .module import Module
  14. from .._internal.opr import param_pack_split
  15. class ParamPack(Module):
  16. r"""Pack module's parameters
  17. :param model: the module you want to pack parameters.
  18. :param nr_ignore_first: how many parameters will be unpacked at first.
  19. :param max_size_per_group: upper bound of packed parameters' size in MB.
  20. :param max_nr_params_per_group: upper bound of the number of parameters of each group.
  21. """
  22. def __init__(self,
  23. model: Module,
  24. nr_ignore_first:int = 8,
  25. max_size_per_group: int = 10,
  26. max_nr_params_per_group: int = 100):
  27. super().__init__()
  28. self._model = model
  29. self._nr_ignore_first = nr_ignore_first
  30. self._max_size_per_group = max_size_per_group
  31. self._max_nr_params_per_group = max_nr_params_per_group
  32. self._grouped_params = []
  33. self._packed_params = []
  34. params = model.parameters()
  35. self._pack_params(params)
  36. def parameters(self, requires_grad: Optional[bool] = None) -> Iterable[Parameter]:
  37. for param in self._packed_params:
  38. if requires_grad is None or param.requires_grad == requires_grad:
  39. yield param
  40. def _pack_params(self, params: Iterable[Parameter]):
  41. groups = collections.defaultdict(list)
  42. ignored = 0
  43. param_id = 0
  44. for param in params:
  45. if self._nr_ignore_first > ignored:
  46. ignored += 1
  47. self._grouped_params.append([{'tensor': param, 'id': param_id}])
  48. self._packed_params.append(param)
  49. else:
  50. key = (param.dtype, param.device, param.requires_grad)
  51. groups[key].append({'tensor': param, 'id': param_id})
  52. param_id += 1
  53. for (dtype, device, requires_grad) in groups.keys():
  54. dtype_sz = np.dtype(dtype).itemsize
  55. align = device.mem_align
  56. if align < dtype_sz:
  57. align = 1
  58. else:
  59. assert align % dtype_sz == 0
  60. align //= dtype_sz
  61. group = groups[(dtype, device, requires_grad)]
  62. while group:
  63. aligned_pos = []
  64. offset = 0
  65. params = []
  66. idx = 0
  67. while idx < len(group):
  68. param = group[idx]
  69. assert param['tensor'].device == device
  70. padding = (align - (offset & (align - 1))) & (align - 1)
  71. offset += padding
  72. aligned_pos.append(offset)
  73. params.append(param)
  74. offset += int(np.prod(param['tensor'].shape))
  75. idx += 1
  76. if (offset * dtype_sz >=
  77. self._max_size_per_group * 1024 * 1024
  78. or idx >= self._max_nr_params_per_group):
  79. break
  80. group = group[idx:]
  81. if idx == 1:
  82. # ignore param packs with only one item
  83. self._packed_params.append(params[0]['tensor'])
  84. self._grouped_params.append(params)
  85. continue
  86. packed_value = np.zeros((offset, ), dtype=dtype)
  87. for param, pos in zip(params, aligned_pos):
  88. val = param['tensor'].numpy()
  89. packed_value[pos:pos + val.size] = val.flatten()
  90. new_param = Parameter(value=packed_value,
  91. device=device,
  92. dtype=dtype,
  93. requires_grad=requires_grad)
  94. self._packed_params.append(new_param)
  95. self._grouped_params.append(params)
  96. def forward(self, *args, **kwargs):
  97. replace_param = dict()
  98. for i in range(len(self._packed_params)):
  99. packed_param = self._packed_params[i]
  100. grouped_params = self._grouped_params[i]
  101. if len(grouped_params) == 1:
  102. continue
  103. split = param_pack_split(packed_param._symvar,
  104. [i['tensor'].shape for i in grouped_params])
  105. split = [
  106. Parameter(Tensor(i, requires_grad=packed_param.requires_grad))
  107. for i in split
  108. ]
  109. for j in range(len(split)):
  110. replace_param[grouped_params[j]['id']] = split[j]
  111. self._model.replace_param(replace_param, 0)
  112. return self._model.forward(*args, **kwargs)

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台

Contributors (1)