You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_dataloader.py 8.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import os
  10. import platform
  11. import time
  12. import numpy as np
  13. import pytest
  14. from megengine.data.collator import Collator
  15. from megengine.data.dataloader import DataLoader
  16. from megengine.data.dataset import ArrayDataset, StreamDataset
  17. from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler
  18. from megengine.data.transform import (
  19. Compose,
  20. Normalize,
  21. PseudoTransform,
  22. ToMode,
  23. Transform,
  24. )
  25. def init_dataset():
  26. sample_num = 100
  27. rand_data = np.random.randint(0, 255, size=(sample_num, 1, 32, 32), dtype=np.uint8)
  28. label = np.random.randint(0, 10, size=(sample_num,), dtype=int)
  29. dataset = ArrayDataset(rand_data, label)
  30. return dataset
  31. def test_dataloader_init():
  32. dataset = init_dataset()
  33. with pytest.raises(ValueError):
  34. dataloader = DataLoader(dataset, num_workers=2, divide=True)
  35. with pytest.raises(ValueError):
  36. dataloader = DataLoader(dataset, num_workers=-1)
  37. with pytest.raises(ValueError):
  38. dataloader = DataLoader(dataset, timeout=-1)
  39. with pytest.raises(ValueError):
  40. dataloader = DataLoader(dataset, num_workers=0, divide=True)
  41. dataloader = DataLoader(dataset)
  42. assert isinstance(dataloader.sampler, SequentialSampler)
  43. assert isinstance(dataloader.transform, PseudoTransform)
  44. assert isinstance(dataloader.collator, Collator)
  45. dataloader = DataLoader(
  46. dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=False)
  47. )
  48. assert len(dataloader) == 17
  49. dataloader = DataLoader(
  50. dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=True)
  51. )
  52. assert len(dataloader) == 16
  53. class MyStream(StreamDataset):
  54. def __init__(self, number, batch=False, error=False):
  55. self.number = number
  56. self.batch = batch
  57. self.error = error
  58. def __iter__(self):
  59. for cnt in range(self.number):
  60. if self.batch:
  61. data = np.random.randint(0, 256, (2, 32, 32, 3), dtype="uint8")
  62. yield (True, (data, [cnt, cnt - self.number]))
  63. else:
  64. data = np.random.randint(0, 256, (32, 32, 3), dtype="uint8")
  65. if self.error:
  66. yield (data, cnt)
  67. else:
  68. yield (False, (data, cnt))
  69. raise StopIteration
  70. @pytest.mark.parametrize("batch", [True, False])
  71. @pytest.mark.parametrize("num_workers", [0, 2])
  72. def test_stream_dataloader(batch, num_workers):
  73. dataset = MyStream(100, batch)
  74. sampler = StreamSampler(batch_size=4)
  75. dataloader = DataLoader(
  76. dataset,
  77. sampler,
  78. Compose([Normalize(mean=(103, 116, 123), std=(57, 57, 58)), ToMode("CHW")]),
  79. num_workers=num_workers,
  80. )
  81. check_set = set()
  82. for step, data in enumerate(dataloader):
  83. if step == 10:
  84. break
  85. assert data[0].shape == (4, 3, 32, 32)
  86. assert data[1].shape == (4,)
  87. for i in data[1]:
  88. assert i not in check_set
  89. check_set.add(i)
  90. def test_stream_dataloader_error():
  91. dataset = MyStream(100, error=True)
  92. sampler = StreamSampler(batch_size=4)
  93. dataloader = DataLoader(dataset, sampler)
  94. with pytest.raises(AssertionError, match=r".*tuple.*"):
  95. data_iter = iter(dataloader)
  96. next(data_iter)
  97. @pytest.mark.parametrize("num_workers", [0, 2])
  98. def test_stream_dataloader_timeout(num_workers):
  99. dataset = MyStream(100, False)
  100. sampler = StreamSampler(batch_size=4)
  101. class TimeoutTransform(Transform):
  102. def __init__(self):
  103. pass
  104. def apply(self, input):
  105. time.sleep(10)
  106. return input
  107. dataloader = DataLoader(
  108. dataset, sampler, TimeoutTransform(), num_workers=num_workers, timeout=5
  109. )
  110. with pytest.raises(RuntimeError, match=r".*timeout.*"):
  111. data_iter = iter(dataloader)
  112. next(data_iter)
  113. def test_dataloader_serial():
  114. dataset = init_dataset()
  115. dataloader = DataLoader(
  116. dataset, sampler=RandomSampler(dataset, batch_size=4, drop_last=False)
  117. )
  118. for (data, label) in dataloader:
  119. assert data.shape == (4, 1, 32, 32)
  120. assert label.shape == (4,)
  121. def test_dataloader_parallel():
  122. # set max shared memory to 100M
  123. os.environ["MGE_PLASMA_MEMORY"] = "100000000"
  124. dataset = init_dataset()
  125. dataloader = DataLoader(
  126. dataset,
  127. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  128. num_workers=2,
  129. divide=False,
  130. )
  131. for (data, label) in dataloader:
  132. assert data.shape == (4, 1, 32, 32)
  133. assert label.shape == (4,)
  134. dataloader = DataLoader(
  135. dataset,
  136. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  137. num_workers=2,
  138. divide=True,
  139. )
  140. for (data, label) in dataloader:
  141. assert data.shape == (4, 1, 32, 32)
  142. assert label.shape == (4,)
  143. @pytest.mark.skipif(
  144. platform.system() == "Windows",
  145. reason="dataloader do not support parallel on windows",
  146. )
  147. def test_dataloader_parallel_timeout():
  148. dataset = init_dataset()
  149. class TimeoutTransform(Transform):
  150. def __init__(self):
  151. pass
  152. def apply(self, input):
  153. time.sleep(10)
  154. return input
  155. dataloader = DataLoader(
  156. dataset,
  157. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  158. transform=TimeoutTransform(),
  159. num_workers=2,
  160. timeout=2,
  161. )
  162. with pytest.raises(RuntimeError, match=r".*timeout.*"):
  163. data_iter = iter(dataloader)
  164. batch_data = next(data_iter)
  165. @pytest.mark.skipif(
  166. platform.system() == "Windows",
  167. reason="dataloader do not support parallel on windows",
  168. )
  169. def test_dataloader_parallel_worker_exception():
  170. dataset = init_dataset()
  171. class FakeErrorTransform(Transform):
  172. def __init__(self):
  173. pass
  174. def apply(self, input):
  175. y = x + 1
  176. return input
  177. dataloader = DataLoader(
  178. dataset,
  179. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  180. transform=FakeErrorTransform(),
  181. num_workers=2,
  182. )
  183. with pytest.raises(RuntimeError, match=r"worker.*died"):
  184. data_iter = iter(dataloader)
  185. batch_data = next(data_iter)
  186. def _multi_instances_parallel_dataloader_worker():
  187. dataset = init_dataset()
  188. for divide_flag in [True, False]:
  189. train_dataloader = DataLoader(
  190. dataset,
  191. sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
  192. num_workers=2,
  193. divide=divide_flag,
  194. )
  195. val_dataloader = DataLoader(
  196. dataset,
  197. sampler=RandomSampler(dataset, batch_size=10, drop_last=False),
  198. num_workers=2,
  199. divide=divide_flag,
  200. )
  201. for idx, (data, label) in enumerate(train_dataloader):
  202. assert data.shape == (4, 1, 32, 32)
  203. assert label.shape == (4,)
  204. if idx % 5 == 0:
  205. for val_data, val_label in val_dataloader:
  206. assert val_data.shape == (10, 1, 32, 32)
  207. assert val_label.shape == (10,)
  208. def test_dataloader_parallel_multi_instances():
  209. # set max shared memory to 100M
  210. os.environ["MGE_PLASMA_MEMORY"] = "100000000"
  211. _multi_instances_parallel_dataloader_worker()
  212. def test_dataloader_parallel_multi_instances_multiprocessing():
  213. # set max shared memory to 100M
  214. os.environ["MGE_PLASMA_MEMORY"] = "100000000"
  215. import multiprocessing as mp
  216. # mp.set_start_method("spawn")
  217. processes = []
  218. for i in range(4):
  219. p = mp.Process(target=_multi_instances_parallel_dataloader_worker)
  220. p.start()
  221. processes.append(p)
  222. for p in processes:
  223. p.join()

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台