You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_conv_bn_relu.py 1.4 kB

123456789101112131415161718192021222324252627282930313233343536373839
  1. import copy
  2. from itertools import product
  3. import numpy as np
  4. from megengine import tensor
  5. from megengine.module import ConvBn2d
  6. from megengine.quantization import quantize_qat
  7. from megengine.quantization.quantize import disable_fake_quant
  8. from megengine.test import assertTensorClose
  9. def test_convbn2d():
  10. in_channels = 32
  11. out_channels = 64
  12. kernel_size = 3
  13. module = ConvBn2d(in_channels, out_channels, kernel_size)
  14. quantize_qat(module)
  15. for groups, bias in product([1, 4], [True, False]):
  16. inputs = tensor(np.random.randn(4, in_channels, 32, 32).astype(np.float32))
  17. module.train()
  18. qat_module = copy.deepcopy(module)
  19. disable_fake_quant(qat_module)
  20. normal_outputs = module.forward(inputs)
  21. qat_outputs = qat_module.forward_qat(inputs)
  22. assertTensorClose(normal_outputs, qat_outputs, max_err=5e-6)
  23. a = module.bn.running_mean.numpy()
  24. b = qat_module.bn.running_mean.numpy()
  25. assertTensorClose(
  26. module.bn.running_mean, qat_module.bn.running_mean, max_err=5e-8
  27. )
  28. assertTensorClose(
  29. module.bn.running_var, qat_module.bn.running_var, max_err=5e-7
  30. )
  31. module.eval()
  32. normal_outputs = module.forward(inputs)
  33. qat_module.eval()
  34. qat_outputs = qat_module.forward_qat(inputs)
  35. assertTensorClose(normal_outputs, qat_outputs, max_err=5e-6)

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台