You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_quantize.py 10 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293
  1. import numpy as np
  2. import pytest
  3. from megengine import Parameter, Tensor
  4. from megengine import module as Float
  5. from megengine.module import qat as QAT
  6. from megengine.module import quantized as Q
  7. from megengine.quantization import (
  8. min_max_fakequant_qconfig,
  9. passive_qconfig,
  10. tqt_qconfig,
  11. )
  12. from megengine.quantization.fake_quant import TQT, FakeQuantize
  13. from megengine.quantization.observer import MinMaxObserver, PassiveObserver
  14. from megengine.quantization.quantize import (
  15. _get_quantable_module_names,
  16. apply_easy_quant,
  17. disable_fake_quant,
  18. disable_observer,
  19. enable_fake_quant,
  20. enable_observer,
  21. propagate_qconfig,
  22. quantize,
  23. quantize_qat,
  24. reset_qconfig,
  25. )
  26. class FloatNet(Float.Module):
  27. def __init__(self):
  28. super().__init__()
  29. self.quant = Float.QuantStub()
  30. self.linear = Float.Sequential(Float.Linear(3, 3), Float.Linear(3, 3))
  31. self.dequant = Float.DequantStub()
  32. self.linear[0].bias[...] = Parameter(np.random.rand(3))
  33. self.linear[1].bias[...] = Parameter(np.random.rand(3))
  34. def forward(self, x):
  35. x = self.quant(x)
  36. x = self.linear(x)
  37. x = self.dequant(x)
  38. return x
  39. class QATNet(Float.Module):
  40. def __init__(self):
  41. super().__init__()
  42. self.quant = QAT.QuantStub()
  43. self.linear = Float.Sequential(QAT.Linear(3, 3), QAT.Linear(3, 3))
  44. self.dequant = QAT.DequantStub()
  45. self.linear[0].bias[...] = Parameter(np.random.rand(3))
  46. self.linear[1].bias[...] = Parameter(np.random.rand(3))
  47. def forward(self, x):
  48. x = self.quant(x)
  49. x = self.linear(x)
  50. x = self.dequant(x)
  51. return x
  52. def test_propagate_qconfig():
  53. net = QATNet()
  54. propagate_qconfig(net, min_max_fakequant_qconfig)
  55. assert all(
  56. [
  57. net.quant.weight_observer is None,
  58. net.quant.weight_fake_quant is None,
  59. isinstance(net.quant.act_observer, MinMaxObserver),
  60. isinstance(net.quant.act_fake_quant, FakeQuantize),
  61. isinstance(net.linear[0].weight_observer, MinMaxObserver),
  62. isinstance(net.linear[0].weight_fake_quant, FakeQuantize),
  63. isinstance(net.linear[0].act_observer, MinMaxObserver),
  64. isinstance(net.linear[0].act_fake_quant, FakeQuantize),
  65. isinstance(net.linear[1].weight_observer, MinMaxObserver),
  66. isinstance(net.linear[1].weight_fake_quant, FakeQuantize),
  67. isinstance(net.linear[1].act_observer, MinMaxObserver),
  68. isinstance(net.linear[1].act_fake_quant, FakeQuantize),
  69. net.dequant.weight_observer is None,
  70. net.dequant.weight_fake_quant is None,
  71. net.dequant.act_observer is None,
  72. net.dequant.act_observer is None,
  73. ]
  74. )
  75. def init_qat_net():
  76. net = QATNet()
  77. propagate_qconfig(net, min_max_fakequant_qconfig)
  78. min_val = np.random.randint(-127, 0, size=(3,))
  79. max_val = np.random.randint(1, 127, size=(3,))
  80. net.quant.act_observer.min_val[...] = Parameter(min_val[0])
  81. net.quant.act_observer.max_val[...] = Parameter(max_val[0])
  82. net.linear[0].weight_observer.min_val[...] = Parameter(min_val[1])
  83. net.linear[0].weight_observer.max_val[...] = Parameter(max_val[1])
  84. net.linear[0].act_observer.min_val[...] = Parameter(min_val[2])
  85. net.linear[0].act_observer.max_val[...] = Parameter(max_val[2])
  86. net.linear[1].weight_observer.min_val[...] = Parameter(min_val[1])
  87. net.linear[1].weight_observer.max_val[...] = Parameter(max_val[1])
  88. net.linear[1].act_observer.min_val[...] = Parameter(min_val[2])
  89. net.linear[1].act_observer.max_val[...] = Parameter(max_val[2])
  90. return net
  91. def test_reset_qconfig():
  92. qat_net = init_qat_net()
  93. new_qat_net = reset_qconfig(qat_net, passive_qconfig)
  94. assert (
  95. new_qat_net.linear[0].get_weight_qparams()
  96. == qat_net.linear[0].get_weight_qparams()
  97. )
  98. assert (
  99. new_qat_net.linear[0].get_activation_qparams()
  100. == qat_net.linear[0].get_activation_qparams()
  101. )
  102. assert (
  103. new_qat_net.linear[1].get_weight_qparams()
  104. == qat_net.linear[1].get_weight_qparams()
  105. )
  106. assert (
  107. new_qat_net.linear[1].get_activation_qparams()
  108. == qat_net.linear[1].get_activation_qparams()
  109. )
  110. def test_enable_and_disable_observer():
  111. net = init_qat_net()
  112. enable_observer(net)
  113. assert net.quant.act_observer.enabled is True
  114. assert net.linear[0].weight_observer.enabled is True
  115. assert net.linear[0].act_observer.enabled is True
  116. assert net.linear[1].weight_observer.enabled is True
  117. assert net.linear[1].act_observer.enabled is True
  118. disable_observer(net)
  119. assert net.quant.act_observer.enabled is False
  120. assert net.linear[0].weight_observer.enabled is False
  121. assert net.linear[0].weight_observer.enabled is False
  122. assert net.linear[1].act_observer.enabled is False
  123. assert net.linear[1].act_observer.enabled is False
  124. def test_enable_and_disable_fake_quant():
  125. net = init_qat_net()
  126. disable_fake_quant(net)
  127. assert net.quant.act_fake_quant.enabled is False
  128. assert net.linear[0].weight_fake_quant.enabled is False
  129. assert net.linear[0].act_fake_quant.enabled is False
  130. assert net.linear[1].weight_fake_quant.enabled is False
  131. assert net.linear[1].act_fake_quant.enabled is False
  132. enable_fake_quant(net)
  133. assert net.quant.act_fake_quant.enabled is True
  134. assert net.linear[0].weight_fake_quant.enabled is True
  135. assert net.linear[0].act_fake_quant.enabled is True
  136. assert net.linear[1].weight_fake_quant.enabled is True
  137. assert net.linear[1].act_fake_quant.enabled is True
  138. def init_observer(module, data):
  139. enable_observer(module)
  140. disable_fake_quant(module)
  141. module(data)
  142. disable_observer(module)
  143. enable_fake_quant(module)
  144. def test_enable_and_disable_all():
  145. x = Tensor(np.random.randint(1, 10, size=(3, 3)).astype(np.float32))
  146. net = FloatNet()
  147. y1 = net(x).numpy()
  148. net = quantize_qat(net, min_max_fakequant_qconfig)
  149. init_observer(net, x)
  150. y2 = net(x).numpy()
  151. disable_fake_quant(net)
  152. y3 = net(x).numpy()
  153. enable_fake_quant(net)
  154. y4 = net(x).numpy()
  155. np.testing.assert_allclose(y1, y3)
  156. np.testing.assert_allclose(y2, y4)
  157. with pytest.raises(AssertionError):
  158. np.testing.assert_allclose(y2, y3)
  159. def test_quantize_qat():
  160. net = FloatNet()
  161. qat_net = quantize_qat(net, inplace=False, qconfig=min_max_fakequant_qconfig)
  162. assert isinstance(qat_net.quant, QAT.QuantStub)
  163. assert isinstance(qat_net.linear[0], QAT.Linear)
  164. assert isinstance(qat_net.linear[1], QAT.Linear)
  165. assert isinstance(qat_net.dequant, QAT.DequantStub)
  166. def test_quantize():
  167. qat_net = init_qat_net()
  168. q_net = quantize(qat_net, inplace=False)
  169. assert isinstance(q_net.quant, Q.QuantStub)
  170. assert isinstance(q_net.linear[0], Q.Linear)
  171. assert isinstance(q_net.linear[1], Q.Linear)
  172. assert isinstance(q_net.dequant, Q.DequantStub)
  173. def test_apply_easy_quant():
  174. qat_net = init_qat_net()
  175. data = Tensor(np.random.rand(2, 3, 3, 3), dtype=np.float32)
  176. eq_net = reset_qconfig(qat_net, passive_qconfig, inplace=False)
  177. apply_easy_quant(eq_net, data, 0.9, 1.1, 10)
  178. assert isinstance(eq_net.quant.act_observer, PassiveObserver)
  179. assert isinstance(eq_net.linear[0].weight_observer, PassiveObserver)
  180. assert isinstance(eq_net.linear[0].act_observer, PassiveObserver)
  181. assert isinstance(eq_net.linear[1].weight_observer, PassiveObserver)
  182. assert isinstance(eq_net.linear[1].act_observer, PassiveObserver)
  183. assert eq_net.dequant.act_observer is None
  184. def test_apply_tqt():
  185. qat_net = init_qat_net()
  186. tqt_net = reset_qconfig(qat_net, tqt_qconfig, inplace=False)
  187. assert isinstance(tqt_net.quant.act_fake_quant, TQT)
  188. assert isinstance(tqt_net.linear[0].weight_fake_quant, TQT)
  189. assert isinstance(tqt_net.linear[0].act_fake_quant, TQT)
  190. assert isinstance(tqt_net.linear[1].weight_fake_quant, TQT)
  191. assert isinstance(tqt_net.linear[1].act_fake_quant, TQT)
  192. assert tqt_net.dequant.act_fake_quant is None
  193. def test_get_quantable_module_names():
  194. # need to make sure names from Quantized and QAT are the same
  195. def _get_qat_module_names():
  196. def is_qat(key: str):
  197. value = getattr(QAT, key)
  198. return (
  199. isinstance(value, type)
  200. and issubclass(value, QAT.QATModule)
  201. and value != QAT.QATModule
  202. )
  203. # source should have all quantable modules' names
  204. quantable_module_names = [key for key in dir(QAT) if is_qat(key)]
  205. return quantable_module_names
  206. qat_module_names = _get_qat_module_names()
  207. quantized_module_names = _get_quantable_module_names()
  208. assert set(qat_module_names) == set(quantized_module_names)
  209. for key in qat_module_names:
  210. value = getattr(Float, key)
  211. assert (
  212. isinstance(value, type)
  213. and issubclass(value, Float.Module)
  214. and value != Float.Module
  215. )
  216. def test_disable_quantize():
  217. class Net(Float.Module):
  218. def __init__(self):
  219. super().__init__()
  220. self.conv = Float.ConvBnRelu2d(3, 3, 3)
  221. self.conv.disable_quantize()
  222. def forward(self, x):
  223. return self.conv(x)
  224. net = Net()
  225. qat_net = quantize_qat(net, inplace=False)
  226. assert isinstance(qat_net.conv, Float.ConvBnRelu2d)
  227. assert isinstance(qat_net.conv.conv, Float.Conv2d)
  228. def test_convert_with_custom_mapping():
  229. class FloatExample(Float.Module):
  230. def forward(self, x):
  231. return x
  232. class QATExample(QAT.QATModule):
  233. def forward(self, x):
  234. return x
  235. @classmethod
  236. def from_float_module(cls, float_module):
  237. return cls()
  238. class Net(Float.Module):
  239. def __init__(self):
  240. super().__init__()
  241. self.example = FloatExample()
  242. def forward(self, x):
  243. return self.example(x)
  244. net = Net()
  245. qat_net = quantize_qat(net, inplace=False, mapping={FloatExample: QATExample})
  246. assert isinstance(qat_net.example, QATExample)