|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330 |
- #include <thread>
- #include "example.h"
- #if LITE_BUILD_WITH_MGE
- #include <cstdio>
-
- #define STB_IMAGE_STATIC
- #define STB_IMAGE_IMPLEMENTATION
- #include "stb_image.h"
-
- #define STB_IMAGE_RESIZE_STATIC
- #define STB_IMAGE_RESIZE_IMPLEMENTATION
- #include "stb_image_resize.h"
-
- #define STB_IMAGE_WRITE_STATIC
- #define STB_IMAGE_WRITE_IMPLEMENTATION
- #include "stb_image_write.h"
-
- #define NMS_THRESH 0.25
- #define BBOX_CONF_THRESH 0.6
-
- constexpr int INPUT_W = 640;
- constexpr int INPUT_H = 640;
-
- using namespace lite;
- using namespace example;
-
- namespace {
-
- void preprocess_image(
- uint8_t* image, const int width, const int height, const int channel,
- std::shared_ptr<Tensor> tensor) {
- auto layout = tensor->get_layout();
- for (size_t i = 0; i < layout.ndim; i++) {
- printf("model input shape[%zu]=%zu \n", i, layout.shapes[i]);
- }
-
- //! resize to target shape
- float r = std::min(INPUT_W / (width * 1.0), INPUT_H / (height * 1.0));
- int unpad_w = r * width;
- int unpad_h = r * height;
-
- std::shared_ptr<std::vector<uint8_t>> resize_int8 =
- std::make_shared<std::vector<uint8_t>>(unpad_w * unpad_h * channel);
- stbir_resize_uint8(
- image, width, height, 0, resize_int8->data(), unpad_w, unpad_h, 0, channel);
-
- std::shared_ptr<std::vector<uint8_t>> padded;
- if (unpad_h != INPUT_H || unpad_w != INPUT_W) {
- padded = std::make_shared<std::vector<uint8_t>>(
- INPUT_H * INPUT_W * channel, 114);
- for (int h = 0; h < unpad_h; h++) {
- for (int w = 0; w < unpad_w; w++) {
- for (int c = 0; c < channel; c++) {
- (*padded)[h * INPUT_W * channel + w * channel + c] =
- (*resize_int8)[h * unpad_w * channel + w * channel + c];
- }
- }
- }
- } else {
- padded = resize_int8;
- }
-
- tensor->set_layout({{1, 3, 640, 640}, 4});
-
- std::vector<float> mean = {0.485, 0.456, 0.406};
- std::vector<float> std = {0.229, 0.224, 0.225};
-
- //! convert form rgb to bgr, relayout from hwc to chw, normalization copy to tensor
- float* in_data = static_cast<float*>(tensor->get_memory_ptr());
- size_t pixels = INPUT_H * INPUT_W;
- for (size_t i = 0; i < pixels; i++) {
- in_data[i] = (padded->at(i * channel + 0) / 255.0f - mean[0]) / std[0];
- in_data[i + 1 * pixels] =
- (padded->at(i * channel + 1) / 255.0f - mean[1]) / std[1];
- in_data[i + 2 * pixels] =
- (padded->at(i * channel + 2) / 255.0f - mean[2]) / std[2];
- }
- }
-
- struct Rect {
- float x;
- float y;
- float height;
- float width;
-
- float area() const { return height * width; }
-
- Rect operator&(Rect other) const {
- Rect ret;
- float x_start = std::max(x, other.x);
- float x_end = std::min(x + width, other.width);
- ret.x = x_start;
- ret.width = (x_end - x_start) > 0 ? x_end - x_start : 0;
-
- float y_start = std::max(y, other.y);
- float y_end = std::min(y + height, other.height);
- ret.y = y_start;
- ret.height = (y_end - y_start) > 0 ? y_end - y_start : 0;
- return ret;
- }
- };
-
- struct Object {
- Rect rect;
- int label;
- float prob;
- };
-
- struct GridAndStride {
- int grid0;
- int grid1;
- int stride;
- };
-
- static void generate_grids_and_stride(
- const int target_size, std::vector<int>& strides,
- std::vector<GridAndStride>& grid_strides) {
- for (auto stride : strides) {
- int num_grid = target_size / stride;
- for (int g1 = 0; g1 < num_grid; g1++) {
- for (int g0 = 0; g0 < num_grid; g0++) {
- grid_strides.push_back((GridAndStride){g0, g1, stride});
- }
- }
- }
- }
-
- static void generate_yolox_proposals(
- std::vector<GridAndStride> grid_strides, const float* feat_ptr,
- float prob_threshold, std::vector<Object>& objects) {
- const int num_class = 80;
- const int num_anchors = grid_strides.size();
-
- for (int anchor_idx = 0; anchor_idx < num_anchors; anchor_idx++) {
- const int grid0 = grid_strides[anchor_idx].grid0;
- const int grid1 = grid_strides[anchor_idx].grid1;
- const int stride = grid_strides[anchor_idx].stride;
-
- const int basic_pos = anchor_idx * 85;
-
- float x_center = (feat_ptr[basic_pos + 0] + grid0) * stride;
- float y_center = (feat_ptr[basic_pos + 1] + grid1) * stride;
- float w = exp(feat_ptr[basic_pos + 2]) * stride;
- float h = exp(feat_ptr[basic_pos + 3]) * stride;
- float x0 = x_center - w * 0.5f;
- float y0 = y_center - h * 0.5f;
-
- float box_objectness = feat_ptr[basic_pos + 4];
- for (int class_idx = 0; class_idx < num_class; class_idx++) {
- float box_cls_score = feat_ptr[basic_pos + 5 + class_idx];
- float box_prob = box_objectness * box_cls_score;
- if (box_prob > prob_threshold) {
- Object obj;
- obj.rect.x = x0;
- obj.rect.y = y0;
- obj.rect.width = w;
- obj.rect.height = h;
- obj.label = class_idx;
- obj.prob = box_prob;
-
- objects.push_back(obj);
- }
-
- } // class loop
-
- } // point anchor loop
- }
-
- void qsort_descent_inplace(std::vector<Object>& faceobjects, int left, int right) {
- int i = left;
- int j = right;
- float p = faceobjects[(left + right) / 2].prob;
-
- while (i <= j) {
- while (faceobjects[i].prob > p)
- i++;
-
- while (faceobjects[j].prob < p)
- j--;
-
- if (i <= j) {
- // swap
- std::swap(faceobjects[i], faceobjects[j]);
-
- i++;
- j--;
- }
- }
- if (left < j)
- qsort_descent_inplace(faceobjects, left, j);
- if (i < right)
- qsort_descent_inplace(faceobjects, i, right);
- }
-
- void qsort_descent_inplace(std::vector<Object>& objects) {
- if (objects.empty())
- return;
- qsort_descent_inplace(objects, 0, objects.size() - 1);
- }
-
- inline float intersection_area(const Object& a, const Object& b) {
- Rect inter = a.rect & b.rect;
- return inter.area();
- }
-
- void nms_sorted_bboxes(
- const std::vector<Object>& faceobjects, std::vector<int>& picked,
- float nms_threshold) {
- picked.clear();
-
- const int n = faceobjects.size();
-
- std::vector<float> areas(n);
- for (int i = 0; i < n; i++) {
- areas[i] = faceobjects[i].rect.area();
- }
-
- for (int i = 0; i < n; i++) {
- const Object& a = faceobjects[i];
-
- int keep = 1;
- for (int j = 0; j < (int)picked.size(); j++) {
- const Object& b = faceobjects[picked[j]];
-
- // intersection over union
- float inter_area = intersection_area(a, b);
- float union_area = areas[i] + areas[picked[j]] - inter_area;
- // float IoU = inter_area / union_area
- if (inter_area / union_area > nms_threshold)
- keep = 0;
- }
-
- if (keep)
- picked.push_back(i);
- }
- }
-
- void decode_outputs(
- const float* prob, std::vector<Object>& objects, float scale, const int img_w,
- const int img_h) {
- std::vector<Object> proposals;
- std::vector<int> strides = {8, 16, 32};
- std::vector<GridAndStride> grid_strides;
-
- generate_grids_and_stride(INPUT_W, strides, grid_strides);
- generate_yolox_proposals(grid_strides, prob, BBOX_CONF_THRESH, proposals);
- qsort_descent_inplace(proposals);
-
- std::vector<int> picked;
- nms_sorted_bboxes(proposals, picked, NMS_THRESH);
- int count = picked.size();
- objects.resize(count);
-
- for (int i = 0; i < count; i++) {
- objects[i] = proposals[picked[i]];
-
- // adjust offset to original unpadded
- float x0 = (objects[i].rect.x) / scale;
- float y0 = (objects[i].rect.y) / scale;
- float x1 = (objects[i].rect.x + objects[i].rect.width) / scale;
- float y1 = (objects[i].rect.y + objects[i].rect.height) / scale;
-
- // clip
- x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f);
- y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f);
- x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f);
- y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f);
-
- objects[i].rect.x = x0;
- objects[i].rect.y = y0;
- objects[i].rect.width = x1 - x0;
- objects[i].rect.height = y1 - y0;
- }
- }
-
- void draw_objects(
- uint8_t* image, int width, int height, int channel,
- const std::vector<Object>& objects) {
- (void)image;
- (void)width;
- (void)height;
- (void)channel;
- for (size_t i = 0; i < objects.size(); i++) {
- const Object& obj = objects[i];
-
- printf("Object: %d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob,
- obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height);
- }
- }
-
- bool detect_yolox(const Args& args) {
- std::string network_path = args.model_path;
- std::string input_path = args.input_path;
-
- int width, height, channel;
- uint8_t* image = stbi_load(input_path.c_str(), &width, &height, &channel, 0);
- printf("Input image %s with height=%d, width=%d, channel=%d\n", input_path.c_str(),
- width, height, channel);
-
- //! create and load the network
- std::shared_ptr<Network> network = std::make_shared<Network>();
- network->load_model(network_path);
- //! set input data to input tensor
-
- auto input_tensor = network->get_io_tensor("data");
-
- preprocess_image(image, width, height, channel, input_tensor);
-
- network->forward();
- network->wait();
-
- float* predict_ptr =
- static_cast<float*>(network->get_output_tensor(0)->get_memory_ptr());
-
- float scale = std::min(INPUT_W / (width * 1.0), INPUT_H / (height * 1.0));
- std::vector<Object> objects;
- decode_outputs(predict_ptr, objects, scale, width, height);
-
- draw_objects(image, width, height, channel, objects);
-
- stbi_image_free(image);
- return 0;
- }
- } // namespace
-
- REGIST_EXAMPLE("detect_yolox", detect_yolox);
-
- #endif
-
- // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}
|