You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_elemwise.py 4.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import numpy as np
  10. import megengine.functional as F
  11. from megengine import tensor
  12. from megengine.functional.elemwise import _elwise
  13. def test_abs():
  14. np.testing.assert_allclose(
  15. F.abs(tensor([-3.0, -4.0, -5.0])).numpy(),
  16. np.abs(np.array([-3.0, -4.0, -5.0], dtype=np.float32)),
  17. )
  18. np.testing.assert_allclose(F.abs(-3.0).numpy(), np.abs(np.float32(-3.0)))
  19. def test_elemwise_mode_string():
  20. np.testing.assert_allclose(
  21. _elwise(tensor([-3.0, -4.0, -5.0]), mode="ABS").numpy(),
  22. np.abs(np.array([-3.0, -4.0, -5.0], dtype=np.float32)),
  23. )
  24. np.testing.assert_allclose(
  25. _elwise(-3.0, mode="ABS").numpy(), np.abs(np.float32(-3.0))
  26. )
  27. def test_multiply():
  28. np.testing.assert_allclose(
  29. F.mul(-3.0, -4.0).numpy(), np.multiply(np.float32(-3.0), np.float32(-4.0))
  30. )
  31. np.testing.assert_allclose(
  32. F.mul(tensor([3.0, 4.0]), 4.0).numpy(),
  33. np.multiply(np.array([3.0, 4.0], dtype=np.float32), 4.0),
  34. )
  35. np.testing.assert_allclose(
  36. F.mul(4.0, tensor([3.0, 4.0])).numpy(),
  37. np.multiply(4.0, np.array([3.0, 4.0], dtype=np.float32)),
  38. )
  39. np.testing.assert_allclose(
  40. F.mul(tensor([3.0, 4.0]), tensor([3.0, 4.0])).numpy(),
  41. np.multiply(
  42. np.array([3.0, 4.0], dtype=np.float32),
  43. np.array([3.0, 4.0], dtype=np.float32),
  44. ),
  45. )
  46. def test_clamp():
  47. """Fix an issue when `lower` or `upper` is 0, it will be recognized as `False` and
  48. `F.clip` will fall into wrong conditions unexpectedly.
  49. """
  50. x = np.linspace(-6, 6, dtype="float32")
  51. np.testing.assert_allclose(
  52. F.clip(tensor(x) + 3, 0, 6).numpy(), np.clip(x + 3, 0, 6)
  53. )
  54. np.testing.assert_allclose(
  55. F.clip(tensor(x) - 3, -6, 0).numpy(), np.clip(x - 3, -6, 0)
  56. )
  57. def test_isnan():
  58. for case in [[1, float("nan"), 0]]:
  59. np.testing.assert_allclose(F.isnan(tensor(case)).numpy(), np.isnan(case))
  60. def test_isinf():
  61. for case in [[1, float("inf"), 0]]:
  62. np.testing.assert_allclose(F.isinf(tensor(case)).numpy(), np.isinf(case))
  63. def test_sign():
  64. for case in [[1, -1, 0]]:
  65. x = tensor(case)
  66. np.testing.assert_allclose(F.sign(x).numpy(), np.sign(case).astype(x.dtype))
  67. def test_cosh():
  68. np.random.seed(42)
  69. x = np.random.randn(100).astype("float32")
  70. y_np = np.cosh(x)
  71. y_mge = F.cosh(tensor(x)).numpy()
  72. np.testing.assert_allclose(y_np, y_mge, rtol=1e-5)
  73. def test_sinh():
  74. np.random.seed(42)
  75. x = np.random.randn(100).astype("float32")
  76. y_np = np.sinh(x)
  77. y_mge = F.sinh(tensor(x)).numpy()
  78. np.testing.assert_allclose(y_np, y_mge, rtol=1e-5)
  79. def test_asinh():
  80. np.random.seed(42)
  81. x = np.random.randn(100).astype("float32")
  82. y_np = np.arcsinh(x)
  83. y_mge = F.asinh(tensor(x)).numpy()
  84. np.testing.assert_almost_equal(y_np, y_mge, decimal=5)
  85. def test_acosh():
  86. x = np.arange(0, 10000).astype("float32") / 100 + 1
  87. y_np = np.arccosh(x)
  88. y_mge = F.acosh(tensor(x)).numpy()
  89. np.testing.assert_almost_equal(y_np, y_mge, decimal=6)
  90. def test_atanh():
  91. np.random.seed(42)
  92. x = np.random.rand(100).astype("float32") * 2 - 1
  93. y_np = np.arctanh(x)
  94. y_mge = F.atanh(tensor(x)).numpy()
  95. np.testing.assert_almost_equal(y_np, y_mge, decimal=5)
  96. def test_hswish():
  97. np.random.seed(42)
  98. x = np.random.randn(100).astype("float32")
  99. y_np = x * np.minimum(np.maximum(x + 3, 0), 6) / 6
  100. y_mge = F.hswish(tensor(x)).numpy()
  101. np.testing.assert_almost_equal(y_np, y_mge, decimal=6)
  102. def test_hsigmoid():
  103. np.random.seed(42)
  104. x = np.random.randn(100).astype("float32")
  105. y_np = np.minimum(np.maximum(x + 3, 0), 6) / 6
  106. y_mge = F.hsigmoid(tensor(x)).numpy()
  107. np.testing.assert_equal(y_np, y_mge)
  108. def test_logical_oprs():
  109. x = np.array([[True, False], [False, True]])
  110. y = np.array([[True, True], [False, False]])
  111. xx = tensor(x)
  112. yy = tensor(y)
  113. np.testing.assert_equal(~x, (F.logical_not(xx)).numpy())
  114. np.testing.assert_equal(x & y, F.logical_and(xx, yy).numpy())
  115. np.testing.assert_equal(x | y, F.logical_or(xx, yy).numpy())
  116. np.testing.assert_equal(x ^ y, F.logical_xor(xx, yy).numpy())

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台