You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

nn.h 62 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494
  1. /**
  2. * \file dnn/include/megdnn/oprs/nn.h
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #pragma once
  12. #include "megdnn/internal/opr_header_prologue.h"
  13. namespace megdnn {
  14. class SeparableConvBase : public OperatorBase {
  15. DEF_OPR_IMPL_CTOR(SeparableConvBase, OperatorBase);
  16. DEF_OPR_PARAM(SeparableConv);
  17. public:
  18. using Mode = Param::Mode;
  19. protected:
  20. void deduce_layout_fwd(const TensorLayout& src,
  21. const TensorLayout& filter_x,
  22. const TensorLayout& filter_y, TensorLayout& dst);
  23. void check_layout_fwd(const TensorLayout& src, const TensorLayout& filter_x,
  24. const TensorLayout& filter_y,
  25. const TensorLayout& dst);
  26. };
  27. class SeparableConvForward : public SeparableConvBase {
  28. DEF_OPR_IMPL(SeparableConvForward, SeparableConvBase, 3, 1);
  29. public:
  30. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter_x,
  31. _megdnn_tensor_in filter_y, _megdnn_tensor_out dst,
  32. _megdnn_workspace workspace) = 0;
  33. void deduce_layout(const TensorLayout& src, const TensorLayout& filter_x,
  34. const TensorLayout& filter_y, TensorLayout& dst);
  35. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  36. const TensorLayout& filter_x,
  37. const TensorLayout& filter_y,
  38. const TensorLayout& dst) = 0;
  39. protected:
  40. void check_exec(const TensorLayout& src, const TensorLayout& filter_x,
  41. const TensorLayout& filter_y, const TensorLayout& dst,
  42. size_t workspace_in_bytes);
  43. };
  44. using SeparableConv = SeparableConvForward;
  45. /**
  46. * \brief base class for convolution operation
  47. *
  48. * This operator is supposed to perform convolution on arbitrary input
  49. * dimensions. The input/output format is N, C, dims..., and kernel format can
  50. * take two forms:
  51. * 1. OC, IC, dims..., for conventional dense convolution
  52. * 2. GROUP, OC_PER_GRP, IC_PER_GRP, dims... for sparse group convolution
  53. *
  54. * Currently, only 2D images are supported.
  55. */
  56. template <typename Parameter>
  57. class ConvolutionBase : public OperatorBase {
  58. DEF_OPR_IMPL_CTOR(ConvolutionBase, OperatorBase);
  59. using Param = Parameter;
  60. public:
  61. Param& param() { return m_param; }
  62. const Param& param() const { return m_param; }
  63. protected:
  64. Param m_param;
  65. public:
  66. static constexpr size_t MAX_SPATIAL_DIM = 2;
  67. using Mode = typename Param::Mode;
  68. struct CanonizedFilterMeta {
  69. DType dtype;
  70. typename Param::Format format;
  71. uint32_t
  72. //! whether filter should be flipped (i.e. is CONVOLUTION)
  73. should_flip,
  74. group, //!< number of groups
  75. icpg, //!< input channels per group
  76. ocpg, //!< output channels per group
  77. spatial_ndim, stride[MAX_SPATIAL_DIM], padding[MAX_SPATIAL_DIM],
  78. //! spatial dim
  79. spatial[MAX_SPATIAL_DIM], dilation[MAX_SPATIAL_DIM],
  80. //! spatial dim with dilation applied
  81. dilated_spatial[MAX_SPATIAL_DIM];
  82. //! T should be a ConvolutionBase<Z>::CanonizedFilterMeta
  83. template <typename T>
  84. void copy_from(const T& b) {
  85. dtype = b.dtype;
  86. format = b.format;
  87. should_flip = b.should_flip;
  88. group = b.group;
  89. icpg = b.icpg;
  90. ocpg = b.ocpg;
  91. spatial_ndim = b.spatial_ndim;
  92. memcpy(stride, b.stride, sizeof(stride));
  93. memcpy(padding, b.padding, sizeof(padding));
  94. memcpy(spatial, b.spatial, sizeof(spatial));
  95. memcpy(dilation, b.dilation, sizeof(dilation));
  96. memcpy(dilated_spatial, b.dilated_spatial, sizeof(dilated_spatial));
  97. }
  98. bool operator==(const CanonizedFilterMeta& b) const {
  99. bool flag = true;
  100. flag = flag && (format == b.format);
  101. flag = flag && (dtype == b.dtype);
  102. flag = flag && (should_flip == b.should_flip);
  103. flag = flag && (group == b.group);
  104. flag = flag && (icpg == b.icpg);
  105. flag = flag && (ocpg == b.ocpg);
  106. flag = flag && (spatial_ndim == b.spatial_ndim);
  107. if (flag) {
  108. for (uint32_t i = 0; i < spatial_ndim; ++i) {
  109. flag = flag && (stride[i] == b.stride[i]);
  110. flag = flag && (padding[i] == b.padding[i]);
  111. flag = flag && (spatial[i] == b.spatial[i]);
  112. flag = flag && (dilation[i] == b.dilation[i]);
  113. flag = flag && (dilated_spatial[i] == b.dilated_spatial[i]);
  114. }
  115. }
  116. return flag;
  117. }
  118. };
  119. struct PreprocessedFilter {
  120. //! user data; its lifetime should be bound to MegDNN Convolution
  121. //! operator
  122. void* algorithm_id;
  123. TensorNDArray tensors;
  124. };
  125. protected:
  126. // Check or deduce output DType
  127. void check_or_deduce_dtype_fwd(DType src, DType filter, DType& dst) const;
  128. CanonizedFilterMeta deduce_layout_fwd(const TensorLayout& src,
  129. const TensorLayout& filter,
  130. TensorLayout& dst) const;
  131. CanonizedFilterMeta check_layout_fwd(const TensorLayout& src,
  132. const TensorLayout& filter,
  133. const TensorLayout& dst) const;
  134. CanonizedFilterMeta make_canonized_filter_meta(
  135. size_t src_ndim, const TensorLayout& filter) const;
  136. };
  137. class MaskPropagate : public OperatorBase {
  138. DEF_OPR_IMPL(MaskPropagate, OperatorBase, 1, 1);
  139. DEF_OPR_PARAM(MaskPropagate);
  140. public:
  141. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_out dst,
  142. _megdnn_workspace workspace) = 0;
  143. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  144. const TensorLayout& dst) = 0;
  145. void deduce_layout(const TensorLayout& src, TensorLayout& dst);
  146. };
  147. /**
  148. * \brief ConvolutionForward Operator with 0/1 Mask matrix
  149. */
  150. class MaskConvForward : public ConvolutionBase<param::Convolution> {
  151. DEF_OPR_IMPL(MaskConvForward, ConvolutionBase, 3, 1);
  152. public:
  153. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
  154. _megdnn_tensor_in mask, _megdnn_tensor_out dst,
  155. _megdnn_workspace worksapce) = 0;
  156. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  157. const TensorLayout& filter,
  158. const TensorLayout& mask,
  159. const TensorLayout& dst) = 0;
  160. void deduce_dtype(DType src, DType filter, DType mask, DType& dst);
  161. void deduce_layout(const TensorLayout& src, const TensorLayout& filter,
  162. const TensorLayout& mask, TensorLayout& dst);
  163. protected:
  164. CanonizedFilterMeta check_exec(const TensorLayout& src,
  165. const TensorLayout& filter,
  166. const TensorLayout& mask,
  167. const TensorLayout& dst,
  168. size_t workspace_in_bytes);
  169. };
  170. using MaskConvolution = MaskConvForward;
  171. /**
  172. * \brief ConvolutionForward operator.
  173. */
  174. class ConvolutionForward : public ConvolutionBase<param::Convolution>,
  175. public detail::MultiAlgoOpr<ConvolutionForward, 3> {
  176. DEF_OPR_IMPL(ConvolutionForward, ConvolutionBase, 2, 1);
  177. public:
  178. /**
  179. * \param[in] src (n, ic, ih, iw)
  180. * \param[in] filter (oc, ic, fh, fw)
  181. * \param[out] dst (n, oc, oh, ow)
  182. */
  183. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
  184. _megdnn_tensor_out dst,
  185. const PreprocessedFilter* preprocessed_filter,
  186. _megdnn_workspace workspace) = 0;
  187. virtual void exec_preprocess(const TensorLayout& src_layout,
  188. _megdnn_tensor_in filter,
  189. const TensorLayout& dst_layout,
  190. PreprocessedFilter* preprocessed_filter,
  191. _megdnn_workspace workspace) = 0;
  192. void deduce_dtype(DType src, DType filter, DType& dst);
  193. void deduce_layout(const TensorLayout& src, const TensorLayout& filter,
  194. TensorLayout& dst);
  195. virtual size_t get_workspace_in_bytes(
  196. const TensorLayout& src, const TensorLayout& filter,
  197. const TensorLayout& dst,
  198. const PreprocessedFilter* preprocessed_filter) = 0;
  199. virtual SmallVector<TensorLayout> deduce_preprocessed_filter_layout(
  200. const TensorLayout& src, const TensorLayout& filter,
  201. const TensorLayout& dst) = 0;
  202. virtual size_t get_preprocess_workspace_in_bytes(
  203. const TensorLayout& src, const TensorLayout& filter,
  204. const TensorLayout& dst) = 0;
  205. protected:
  206. CanonizedFilterMeta check_exec(const TensorLayout& src,
  207. const TensorLayout& filter,
  208. const TensorLayout& dst,
  209. size_t workspace_in_bytes);
  210. };
  211. using Convolution = ConvolutionForward;
  212. /**
  213. * \brief ConvolutionBackwardData operator.
  214. *
  215. * Calculating the gradient wrt. convolution input data.
  216. */
  217. class ConvolutionBackwardData
  218. : public ConvolutionBase<param::Convolution>,
  219. public detail::MultiAlgoOpr<ConvolutionBackwardData, 3> {
  220. DEF_OPR_IMPL(ConvolutionBackwardData, ConvolutionBase, 2, 1);
  221. public:
  222. /**
  223. * \param[in] filter (oc, ic, fh, fw)
  224. * \param[in] diff (n, oc, oh, ow)
  225. * \param[out] grad (n, ic, ih, iw)
  226. */
  227. virtual void exec(_megdnn_tensor_in filter, _megdnn_tensor_in diff,
  228. _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
  229. virtual size_t get_workspace_in_bytes(const TensorLayout& filter,
  230. const TensorLayout& diff,
  231. const TensorLayout& grad) = 0;
  232. void deduce_dtype(DType filter, DType diff, DType& grad);
  233. void deduce_layout(const TensorLayout& filter, const TensorLayout& diff,
  234. TensorLayout& grad);
  235. protected:
  236. CanonizedFilterMeta check_exec(const TensorLayout& filter,
  237. const TensorLayout& diff,
  238. const TensorLayout& grad,
  239. size_t workspace_in_bytes);
  240. };
  241. /**
  242. * \brief ConvolutionBackwardFilter operator.
  243. *
  244. * Calculating the gradient wrt. convolution filter.
  245. */
  246. class ConvolutionBackwardFilter
  247. : public ConvolutionBase<param::Convolution>,
  248. public detail::MultiAlgoOpr<ConvolutionBackwardFilter, 3> {
  249. DEF_OPR_IMPL(ConvolutionBackwardFilter, ConvolutionBase, 2, 1);
  250. public:
  251. /**
  252. * \param[in] src (n, ic, ih, iw)
  253. * \param[in] diff (n, oc, oh, ow)
  254. * \param[out] grad (oc, ic, fh, fw)
  255. */
  256. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in diff,
  257. _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
  258. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  259. const TensorLayout& diff,
  260. const TensorLayout& grad) = 0;
  261. protected:
  262. CanonizedFilterMeta check_exec(const TensorLayout& src,
  263. const TensorLayout& diff,
  264. const TensorLayout& grad,
  265. size_t workspace_in_bytes);
  266. };
  267. /**
  268. * \brief ConvolutionBias operator
  269. */
  270. class ConvBiasForward : public ConvolutionBase<param::ConvBias>,
  271. public detail::MultiAlgoOpr<ConvBiasForward, 5> {
  272. DEF_OPR_IMPL(ConvBiasForward, ConvolutionBase, 4, 1);
  273. public:
  274. /**
  275. * \param[in] src (n, ic, ih, iw) or (n, ih, iw, ic)
  276. * \param[in] filter (oc, ic, fh, fw) or (oc, fh, fw, ic) or (oc/4, fh, fw,
  277. * 4*ic) \param[in] bias (1, oc, 1, 1) \param[in] z same as dst \param[out]
  278. * dst (n, oc, oh, ow) or (n, oh, ow, oc)
  279. *
  280. * \note if the format is NCHW_WINOGRAD, the filter layout is (alphah,
  281. * alphaw, oc, ic)
  282. */
  283. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
  284. _megdnn_tensor_in bias, _megdnn_tensor_in z,
  285. _megdnn_tensor_out dst,
  286. const PreprocessedFilter* preprocessed_filter,
  287. _megdnn_workspace workspace) = 0;
  288. virtual void exec_preprocess(const TensorLayout& src_layout,
  289. _megdnn_tensor_in filter,
  290. const TensorLayout& bias_layout,
  291. const TensorLayout& z_layout,
  292. const TensorLayout& dst_layout,
  293. PreprocessedFilter* preprocessed_filter,
  294. _megdnn_workspace workspace) = 0;
  295. void deduce_dtype(DType src, DType filter, DType bias, DType z, DType& dst);
  296. void deduce_layout(const TensorLayout& src, const TensorLayout& filter,
  297. const TensorLayout& bias, const TensorLayout& z,
  298. TensorLayout& dst);
  299. virtual size_t get_workspace_in_bytes(
  300. const TensorLayout& src, const TensorLayout& filter,
  301. const TensorLayout& bias, const TensorLayout& z,
  302. const TensorLayout& dst,
  303. const PreprocessedFilter* preprocessed_filter) = 0;
  304. virtual size_t get_preprocess_workspace_in_bytes(
  305. const TensorLayout& src, const TensorLayout& filter,
  306. const TensorLayout& bias, const TensorLayout& z,
  307. const TensorLayout& dst) = 0;
  308. virtual SmallVector<TensorLayout> deduce_preprocessed_filter_layout(
  309. const TensorLayout& src, const TensorLayout& filter,
  310. const TensorLayout& bias, const TensorLayout& z,
  311. const TensorLayout& dst) = 0;
  312. static void deduce_winograd_origin_layout_and_param(
  313. const Param::Format format, const size_t output_block_size,
  314. const TensorLayout& src_layout,
  315. const TensorLayout& winograd_filter_layout,
  316. TensorLayout& origin_layout, Param& origin_param);
  317. enum class BiasMode : uint32_t {
  318. NO_BIAS = 0, //!< no bias
  319. BROADCAST_CHANNEL_BIAS, //!< broadcast channel bias, [1, c, 1, 1]
  320. BIAS //!< [N, C, H, W]
  321. };
  322. //! param for winograd algos.
  323. struct WinogradParam {
  324. uint32_t channel_block_size;
  325. uint32_t output_block_size;
  326. uint32_t tile_size;
  327. bool operator==(const WinogradParam& rhs) const {
  328. return channel_block_size == rhs.channel_block_size &&
  329. output_block_size == rhs.output_block_size &&
  330. tile_size == rhs.tile_size;
  331. }
  332. std::string to_string() const;
  333. };
  334. static constexpr WinogradParam INVALID_WINOGRAD_PARAM = {0, 0, 0};
  335. struct DirectParam {
  336. std::string to_string() const { return ""; }
  337. };
  338. struct MatmulParam {
  339. std::string to_string() const { return ""; }
  340. };
  341. struct DefaultParam {
  342. std::string to_string() const { return ""; }
  343. };
  344. //! get algo name, the format is ParamTrait<T>::category:base:p.to_string()
  345. //! \warning: base must not contain :.
  346. template <typename T>
  347. static std::string algo_name(
  348. const std::string& base, const T& p,
  349. param::ConvBias::Format format = param::ConvBias::Format::NCHW);
  350. /*!
  351. * \brief parse algo_name and get WinogradParam from algo name.
  352. *
  353. * \param algo name string
  354. * \return WinogradParam parsed from algo name, use pattern
  355. * winograd:base:m:tile_size.
  356. *
  357. * \warning: INVALID_WINOGRAD_PARAM returns if the algo_name is not matched.
  358. */
  359. static WinogradParam parse_winograd_name(const std::string& algo_name);
  360. protected:
  361. CanonizedFilterMeta check_exec(const TensorLayout& src,
  362. const TensorLayout& filter,
  363. const TensorLayout& bias,
  364. const TensorLayout& z,
  365. const TensorLayout& dst,
  366. size_t workspace_in_bytes);
  367. };
  368. using ConvBias = ConvBiasForward;
  369. /**
  370. * \brief base class for Conv - Nonline - Pooling
  371. */
  372. class ConvPoolingBase : public OperatorBase {
  373. DEF_OPR_IMPL_CTOR(ConvPoolingBase, OperatorBase);
  374. /**
  375. * \ Param::Method: Two methods to fetch the input data.
  376. * Default methods is WITH_TEXTURE_OBJ.
  377. * If you want to use WITH_SHARED_MEM mode,
  378. * please make sure that the size of
  379. * [ all of the fliter kernels + a channel
  380. * of input data + a channel of output data]
  381. * should be no large than 38KB.
  382. * And the pooling mode should not be "MAX".
  383. */
  384. DEF_OPR_PARAM(ConvPooling);
  385. protected:
  386. virtual void deduce_layout(const TensorLayout& src,
  387. const TensorLayout& filter,
  388. const TensorLayout& bias, TensorLayout& dst) = 0;
  389. virtual void check_layout(const TensorLayout& src,
  390. const TensorLayout& filter,
  391. const TensorLayout& bias, TensorLayout& dst,
  392. size_t workspace_limit_in_bytes) = 0;
  393. };
  394. class ConvPoolingForward : public ConvPoolingBase {
  395. DEF_OPR_IMPL(ConvPoolingForward, ConvPoolingBase, 2, 1);
  396. public:
  397. /**
  398. * \param[in] src input tensor
  399. * \param[out] dst output tensor
  400. */
  401. virtual void exec(const _megdnn_in TensorND src,
  402. const _megdnn_in TensorND filter,
  403. const _megdnn_in TensorND bias, _megdnn_out TensorND dst,
  404. _megdnn_out Workspace workspace) = 0;
  405. virtual void deduce_layout(const TensorLayout& src,
  406. const TensorLayout& filter,
  407. const TensorLayout& bias, TensorLayout& dst) = 0;
  408. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  409. const TensorLayout& filter,
  410. const TensorLayout& bias,
  411. const TensorLayout& dst) = 0;
  412. protected:
  413. virtual void check_layout(const TensorLayout& src,
  414. const TensorLayout& filter,
  415. const TensorLayout& bias, TensorLayout& dst,
  416. size_t workspace_limit_in_bytes) = 0;
  417. };
  418. using ConvPooling = ConvPoolingForward;
  419. class GroupLocalBase : public OperatorBase {
  420. DEF_OPR_IMPL_CTOR(GroupLocalBase, OperatorBase);
  421. DEF_OPR_PARAM(Convolution);
  422. public:
  423. using Mode = Param::Mode;
  424. protected:
  425. void deduce_layout_fwd(const TensorLayout& src, const TensorLayout& filter,
  426. TensorLayout& dst);
  427. void check_layout_fwd(const TensorLayout& src, const TensorLayout& filter,
  428. const TensorLayout& dst);
  429. };
  430. class GroupLocalForward : public GroupLocalBase {
  431. DEF_OPR_IMPL(GroupLocalForward, GroupLocalBase, 2, 1);
  432. public:
  433. /**
  434. * \param[in] src (N, IC, IH, IW)
  435. * \param[in] filter (G, OH, OW, IC/G, FH, FW, OC/G)
  436. * \param[out] dst (N, OC, OH, OW)
  437. **/
  438. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
  439. _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;
  440. void deduce_layout(const TensorLayout& src, const TensorLayout& filter,
  441. TensorLayout& dst) {
  442. deduce_layout_fwd(src, filter, dst);
  443. }
  444. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  445. const TensorLayout& filter,
  446. const TensorLayout& dst) = 0;
  447. protected:
  448. void check_exec(const TensorLayout& src, const TensorLayout& filter,
  449. const TensorLayout& dst, size_t workspace_in_bytes);
  450. };
  451. using GroupLocal = GroupLocalForward;
  452. class GroupLocalBackwardData : public GroupLocalBase {
  453. DEF_OPR_IMPL(GroupLocalBackwardData, GroupLocalBase, 2, 1);
  454. public:
  455. virtual void exec(_megdnn_tensor_in filter, _megdnn_tensor_in diff,
  456. _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
  457. virtual size_t get_workspace_in_bytes(const TensorLayout& filter,
  458. const TensorLayout& diff,
  459. const TensorLayout& grad) = 0;
  460. protected:
  461. void check_exec(const TensorLayout& filter, const TensorLayout& diff,
  462. const TensorLayout& grad, size_t workspace_in_bytes);
  463. };
  464. class GroupLocalBackwardFilter : public GroupLocalBase {
  465. DEF_OPR_IMPL(GroupLocalBackwardFilter, GroupLocalBase, 2, 1);
  466. public:
  467. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in diff,
  468. _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
  469. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  470. const TensorLayout& diff,
  471. const TensorLayout& grad) = 0;
  472. protected:
  473. void check_exec(const TensorLayout& filter, const TensorLayout& diff,
  474. const TensorLayout& grad, size_t workspace_in_bytes);
  475. };
  476. class Images2NeibsBase : public OperatorBase {
  477. DEF_OPR_IMPL_CTOR(Images2NeibsBase, OperatorBase);
  478. DEF_OPR_PARAM(Images2Neibs);
  479. protected:
  480. void deduce_layout_fwd(const TensorLayout& src, TensorLayout& dst);
  481. void check_layout_fwd(const TensorLayout& filter, const TensorLayout& dst);
  482. };
  483. class Images2NeibsForward : public Images2NeibsBase {
  484. DEF_OPR_IMPL(Images2NeibsForward, Images2NeibsBase, 1, 1);
  485. public:
  486. /**
  487. * \param[in] src (N, C, IH, IW)
  488. * \param[out] dst (N, C, OH, OW, window_h, window_w)
  489. *
  490. * \see
  491. * http://deeplearning.net/software/theano/library/tensor/nnet/neighbours.html
  492. *
  493. * \f$ dst_{n, c, oh, ow, wh, ww} = src_{n, c, ih+wh, iw+fw}\f$,
  494. * where \f$ ih=-pad_h+oh*stride_h, iw=-pad_w+ow*stride_w\f$.
  495. */
  496. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_out dst,
  497. _megdnn_workspace workspace) = 0;
  498. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  499. const TensorLayout& dst) = 0;
  500. void deduce_layout(const TensorLayout& src, TensorLayout& dst);
  501. protected:
  502. void check_exec(const TensorLayout& src, const TensorLayout& dst,
  503. size_t workspace_in_bytes);
  504. };
  505. using Images2Neibs = Images2NeibsForward;
  506. class Images2NeibsBackward : public Images2NeibsBase {
  507. DEF_OPR_IMPL(Images2NeibsBackward, Images2NeibsBase, 1, 1);
  508. public:
  509. /**
  510. * \param[in] diff the backpropagated gradient wrt. dst
  511. * \param[out] grad the backpropagated gradient wrt. src
  512. */
  513. virtual void exec(_megdnn_tensor_in diff, _megdnn_tensor_out grad,
  514. _megdnn_workspace workspace) = 0;
  515. virtual size_t get_workspace_in_bytes(const TensorLayout& diff,
  516. const TensorLayout& grad) = 0;
  517. protected:
  518. void check_exec(const TensorLayout& diff, const TensorLayout& grad,
  519. size_t workspace_in_bytes);
  520. };
  521. /**
  522. * \brief base class for Pooling
  523. */
  524. class PoolingBase : public OperatorBase {
  525. DEF_OPR_IMPL_CTOR(PoolingBase, OperatorBase);
  526. DEF_OPR_PARAM(Pooling);
  527. public:
  528. using Mode = Param::Mode;
  529. protected:
  530. void deduce_layout_fwd(const TensorLayout& src, TensorLayout& dst);
  531. void check_layout_fwd(const TensorLayout& src, const TensorLayout& dst);
  532. };
  533. class PoolingForward : public PoolingBase {
  534. DEF_OPR_IMPL(PoolingForward, PoolingBase, 1, 1);
  535. public:
  536. /**
  537. * \param[in] src input tensor
  538. * \param[out] dst output tensor
  539. */
  540. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_out dst,
  541. _megdnn_workspace workspace) = 0;
  542. void deduce_layout(const TensorLayout& src, TensorLayout& dst);
  543. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  544. const TensorLayout& dst) = 0;
  545. protected:
  546. void check_exec(const TensorLayout& src, const TensorLayout& dst,
  547. size_t workspace_in_bytes);
  548. };
  549. using Pooling = PoolingForward;
  550. class PoolingBackward : public PoolingBase {
  551. DEF_OPR_IMPL(PoolingBackward, PoolingBase, 3, 1);
  552. public:
  553. /**
  554. * \param[in] src the `src' parameter in PoolingForward::exec
  555. * \param[in] dst the `dst' parameter in PoolingForward::exec
  556. * \param[in] diff the backpropagated gradient wrt. dst
  557. * \param[out] grad the backpropagated gradient wrt. src
  558. */
  559. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in dst,
  560. _megdnn_tensor_in diff, _megdnn_tensor_out grad,
  561. _megdnn_workspace workspace) = 0;
  562. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  563. const TensorLayout& dst,
  564. const TensorLayout& diff,
  565. const TensorLayout& grad) = 0;
  566. protected:
  567. void check_exec(const TensorLayout& src, const TensorLayout& dst,
  568. const TensorLayout& diff, const TensorLayout& grad,
  569. size_t workspace_in_bytes);
  570. };
  571. /**
  572. * \brief base class for Local
  573. */
  574. class LocalBase : public OperatorBase {
  575. DEF_OPR_IMPL_CTOR(LocalBase, OperatorBase);
  576. DEF_OPR_PARAM(Convolution);
  577. public:
  578. using Mode = Param::Mode;
  579. protected:
  580. void deduce_layout_fwd(const TensorLayout& src, const TensorLayout& filter,
  581. TensorLayout& dst);
  582. void check_layout_fwd(const TensorLayout& src, const TensorLayout& filter,
  583. const TensorLayout& dst);
  584. };
  585. class LocalForward : public LocalBase {
  586. DEF_OPR_IMPL(LocalForward, LocalBase, 2, 1);
  587. public:
  588. /**
  589. * \param[in] src (n, ic, ih, iw)
  590. * \param[in] filter (oh, ow, ic, fh, fw, oc)
  591. * \param[out] dst (n, oc, oh, ow)
  592. */
  593. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
  594. _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;
  595. /**
  596. * \brief Deducing output tensor layouts from input tensor layouts.
  597. *
  598. * Be aware that the first and second dimension of `filter' are ignored
  599. * when deducing `dst' layout.
  600. */
  601. void deduce_layout(const TensorLayout& src, const TensorLayout& filter,
  602. TensorLayout& dst);
  603. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  604. const TensorLayout& filter,
  605. const TensorLayout& dst) = 0;
  606. protected:
  607. void check_exec(const TensorLayout& src, const TensorLayout& filter,
  608. const TensorLayout& dst, size_t workspace_in_bytes);
  609. };
  610. using Local = LocalForward;
  611. class LocalBackwardData : public LocalBase {
  612. DEF_OPR_IMPL(LocalBackwardData, LocalBase, 2, 1);
  613. public:
  614. /**
  615. * \param[in] filter (oh, ow, ic, fh, fw, oc)
  616. * \param[in] diff (n, oc, oh, ow)
  617. * \param[out] grad (n, ic, ih, iw)
  618. */
  619. virtual void exec(_megdnn_tensor_in filter, _megdnn_tensor_in diff,
  620. _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
  621. virtual size_t get_workspace_in_bytes(const TensorLayout& filter,
  622. const TensorLayout& diff,
  623. const TensorLayout& grad) = 0;
  624. protected:
  625. void check_exec(const TensorLayout& filter, const TensorLayout& diff,
  626. const TensorLayout& grad, size_t workspace_in_bytes);
  627. };
  628. class LocalBackwardFilter : public LocalBase {
  629. DEF_OPR_IMPL(LocalBackwardFilter, LocalBase, 2, 1);
  630. public:
  631. /**
  632. * \param[in] src (n, ic, ih, iw)
  633. * \param[in] diff (n, oc, oh, ow)
  634. * \param[out] grad (oh, ow, ic, fh, fw, oc)
  635. */
  636. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in diff,
  637. _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
  638. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  639. const TensorLayout& diff,
  640. const TensorLayout& grad) = 0;
  641. protected:
  642. void check_exec(const TensorLayout& src, const TensorLayout& diff,
  643. const TensorLayout& grad, size_t workspace_in_bytes);
  644. };
  645. class BNBase : public OperatorBase {
  646. DEF_OPR_IMPL_CTOR(BNBase, OperatorBase);
  647. DEF_OPR_PARAM(BN);
  648. protected:
  649. void check_param();
  650. };
  651. class BNForward : public BNBase {
  652. DEF_OPR_IMPL(BNForward, BNBase, 6, 5);
  653. public:
  654. /**
  655. * \dst[i] = gemma
  656. * *(x[i]-estimatedMean[k])/sqrt(epsilon+estimatedVariance[k]) + beta \where
  657. * epsilon is a very small value to avoid a "divide by zero" error.
  658. * \param[in] src (n, c, h, w)
  659. * \param[out] dst (n, c, h, w)
  660. * \param[out] mean (see m_param.ParamDim) Global mean.
  661. * \param[out] variance (see m_param.ParamDim) Global variance.
  662. * \Param[out] batch_mean (see m_param.ParamDim)
  663. * Optionally cached intermediate mean from forward pass
  664. * \Param[out] batch_inv_variance (see m_param.ParamDim)
  665. * Optionally cached intermediate variance from forward pass
  666. * src and dst must have the same shape.
  667. * src and dst must be contiguous.
  668. */
  669. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in bn_scale,
  670. _megdnn_tensor_in bn_bias, _megdnn_tensor_inout mean,
  671. _megdnn_tensor_inout variance,
  672. _megdnn_tensor_out batch_mean,
  673. _megdnn_tensor_out batch_inv_variance,
  674. _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;
  675. void deduce_layout(const TensorLayout& src, TensorLayout& bn_scale,
  676. TensorLayout& bn_bias, TensorLayout& mean,
  677. TensorLayout& variance, TensorLayout& batch_mean,
  678. TensorLayout& batch_inv_variance, TensorLayout& dst);
  679. virtual size_t get_workspace_in_bytes(
  680. const TensorLayout& src, const TensorLayout& bn_scale,
  681. const TensorLayout& bn_bias, const TensorLayout& mean,
  682. const TensorLayout& variance, const TensorLayout& batch_mean,
  683. const TensorLayout& batch_inv_variance,
  684. const TensorLayout& dst) = 0;
  685. protected:
  686. void check_exec(const TensorLayout& src, const TensorLayout& bn_scale,
  687. const TensorLayout& bn_bias, const TensorLayout& mean,
  688. const TensorLayout& variance,
  689. const TensorLayout& batch_mean,
  690. const TensorLayout& batch_inv_variance,
  691. const TensorLayout& dst, size_t workspace_in_bytes);
  692. };
  693. using BN = BNForward;
  694. class BNBackward : public BNBase {
  695. DEF_OPR_IMPL(BNBackward, BNBase, 5, 3);
  696. public:
  697. /**
  698. * \param[in] input data of forwarding propagate.
  699. * \param[in] dy the backpropagated gradient of y.
  700. * \param[out] dx the backpropagated gradient of x.
  701. * \param[out] d_bn_scale, the backpropagated gradient of bn_scale.
  702. * \param[out] d_bn_bias, the backpropagated gradient of bn_bias.
  703. * Optionally cached intermediate results from forward pass
  704. * \param[in] saved_batch_mean mean of the input batch.
  705. Calculated in the forwardpropagation.
  706. * \param[in] saved_batch_variance of the input batch.
  707. Calculated in the forwardpropagation.
  708. */
  709. virtual void exec(_megdnn_tensor_in x, _megdnn_tensor_in dy,
  710. _megdnn_tensor_in saved_batch_mean,
  711. _megdnn_tensor_in saved_batch_variance,
  712. _megdnn_tensor_in bn_scale, _megdnn_tensor_out d_bn_scale,
  713. _megdnn_tensor_out d_bn_bias, _megdnn_tensor_out dx,
  714. _megdnn_workspace workspace) = 0;
  715. virtual size_t get_workspace_in_bytes(
  716. const TensorLayout& x, const TensorLayout& dy,
  717. const TensorLayout& saved_batch_mean,
  718. const TensorLayout& saved_batch_variance,
  719. const TensorLayout& bn_scale, const TensorLayout& d_bn_scale,
  720. const TensorLayout& d_bn_bias, const TensorLayout& dx) = 0;
  721. protected:
  722. void check_exec(const TensorLayout& x, const TensorLayout& dy,
  723. const TensorLayout& saved_batch_mean,
  724. const TensorLayout& saved_batch_variance,
  725. const TensorLayout& bn_scale,
  726. const TensorLayout& d_bn_scale,
  727. const TensorLayout& d_bn_bias, const TensorLayout& dx,
  728. size_t workspace_in_bytes);
  729. };
  730. class LRNBase : public OperatorBase {
  731. DEF_OPR_IMPL_CTOR(LRNBase, OperatorBase);
  732. DEF_OPR_PARAM(LRN);
  733. protected:
  734. void check_param();
  735. };
  736. class LRNForward : public LRNBase {
  737. DEF_OPR_IMPL(LRNForward, LRNBase, 1, 1);
  738. public:
  739. /**
  740. * \see ImageNet Classification with Deep Convolutional Neural Networks
  741. * \param[in] src (n, c, h, w)
  742. * \param[out] dst (n, c, h, w)
  743. *
  744. * src and dst must have the same shape.
  745. * src and dst must be contiguous.
  746. */
  747. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_out dst,
  748. _megdnn_workspace workspace) = 0;
  749. void deduce_layout(const TensorLayout& src, TensorLayout& dst);
  750. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  751. const TensorLayout& dst) = 0;
  752. protected:
  753. void check_exec(const TensorLayout& src, const TensorLayout& dst,
  754. size_t workspace_in_bytes);
  755. };
  756. using LRN = LRNForward;
  757. class LRNBackward : public LRNBase {
  758. DEF_OPR_IMPL(LRNBackward, LRNBase, 3, 1);
  759. public:
  760. /**
  761. * \param[in] src the `src' parameter in LRNForward::exec
  762. * \param[in] dst the `dst' parameter in LRNForward::exec
  763. * \param[in] diff the backpropagated gradient wrt. dst
  764. * \param[out] grad the backpropagated gradient wrt. src
  765. *
  766. * All tensors should be contiguous and of the same shape.
  767. */
  768. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in dst,
  769. _megdnn_tensor_in diff, _megdnn_tensor_out grad,
  770. _megdnn_workspace workspace) = 0;
  771. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  772. const TensorLayout& dst,
  773. const TensorLayout& diff,
  774. const TensorLayout& grad) = 0;
  775. protected:
  776. void check_exec(const TensorLayout& src, const TensorLayout& dst,
  777. const TensorLayout& diff, const TensorLayout& grad,
  778. size_t workspace_in_bytes);
  779. };
  780. class ROIPoolingBase : public OperatorBase {
  781. DEF_OPR_IMPL_CTOR(ROIPoolingBase, OperatorBase);
  782. DEF_OPR_PARAM(ROIPooling);
  783. protected:
  784. void check_layout_fwd(const TensorLayout& src, const TensorLayout& rois,
  785. const TensorLayout& dst, const TensorLayout& index);
  786. };
  787. class ROIPoolingForward : public ROIPoolingBase {
  788. DEF_OPR_IMPL(ROIPoolingForward, ROIPoolingBase, 2, 2);
  789. public:
  790. /**
  791. * \param[in] src (n, c, ih, iw)
  792. * \param[in] rois (m, 5)
  793. * \param[out] dst (m, c, oh, ow)
  794. * \param[out] index (m, c, oh, ow) if mode is MAX, (0) if mode is AVERAGE
  795. *
  796. * The internal implementation is akin to
  797. * https://github.com/rbgirshick/caffe-fast-rcnn .d
  798. * Note that rois(, 0) denotes the input image index. We store it as
  799. * a float, but it should be an integer instead.
  800. *
  801. * index is a temporary tensor to facilitate its backward operator.
  802. * It is used to store argmax indicex in MAX mode, and it is not used
  803. * in AVERAGE mode.
  804. */
  805. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in rois,
  806. _megdnn_tensor_out dst, _megdnn_tensor_out index,
  807. _megdnn_workspace workspace) = 0;
  808. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  809. const TensorLayout& rois,
  810. const TensorLayout& dst,
  811. const TensorLayout& index) = 0;
  812. protected:
  813. void check_exec(const TensorLayout& src, const TensorLayout& rois,
  814. const TensorLayout& dst, const TensorLayout& index,
  815. size_t workspace_in_bytes);
  816. };
  817. using ROIPooling = ROIPoolingForward;
  818. class ROIPoolingBackward : public ROIPoolingBase {
  819. DEF_OPR_IMPL(ROIPoolingBackward, ROIPoolingBase, 4, 1);
  820. public:
  821. /**
  822. * \param[in] diff the backpropagated gradient wrt. dst
  823. * \param[in] src the `src' parameter in ROIPoolingForward::exec
  824. * \param[in] rois the `rois' parameter in ROIPoolingForward::exec
  825. * \param[in] index the `index' parameter in ROIPoolingForward::exec
  826. * \param[out] grad the backpropagated gradient wrt. src
  827. */
  828. virtual void exec(_megdnn_tensor_in diff, _megdnn_tensor_in src,
  829. _megdnn_tensor_in rois, _megdnn_tensor_in index,
  830. _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
  831. virtual size_t get_workspace_in_bytes(const TensorLayout& diff,
  832. const TensorLayout& src,
  833. const TensorLayout& rois,
  834. const TensorLayout& index,
  835. const TensorLayout& grad) = 0;
  836. protected:
  837. void check_exec(const TensorLayout& diff, const TensorLayout& src,
  838. const TensorLayout& rois, const TensorLayout& index,
  839. const TensorLayout& grad, size_t workspace_in_bytes);
  840. };
  841. class Convolution3DBase : public OperatorBase {
  842. DEF_OPR_IMPL_CTOR(Convolution3DBase, OperatorBase);
  843. DEF_OPR_PARAM(Convolution3D);
  844. public:
  845. static constexpr size_t MAX_SPATIAL_DIM = 3;
  846. using Mode = Param::Mode;
  847. struct CanonizedFilterMeta {
  848. DTypeEnum dtype_enum;
  849. Param::Format format;
  850. uint32_t
  851. //! whether filter should be flipped (i.e. is CONVOLUTION)
  852. should_flip,
  853. group, //!< number of groups
  854. icpg, //!< input channels per group
  855. ocpg, //!< output channels per group
  856. spatial_ndim, stride[MAX_SPATIAL_DIM], padding[MAX_SPATIAL_DIM],
  857. //! spatial dim
  858. spatial[MAX_SPATIAL_DIM], dilation[MAX_SPATIAL_DIM],
  859. //! spatial dim with dilation applied
  860. dilated_spatial[MAX_SPATIAL_DIM];
  861. } MEGDNN_PACKED;
  862. protected:
  863. CanonizedFilterMeta deduce_layout_fwd(const TensorLayout& src,
  864. const TensorLayout& filter,
  865. TensorLayout& dst) const;
  866. CanonizedFilterMeta check_layout_fwd(const TensorLayout& src,
  867. const TensorLayout& filter,
  868. const TensorLayout& dst) const;
  869. CanonizedFilterMeta make_canonized_filter_meta(
  870. size_t src_ndim, const TensorLayout& filter) const;
  871. };
  872. class Convolution3DForward
  873. : public Convolution3DBase,
  874. public detail::MultiAlgoOpr<Convolution3DForward, 3> {
  875. DEF_OPR_IMPL(Convolution3DForward, Convolution3DBase, 2, 1);
  876. public:
  877. /**
  878. * \param[in] src (n, ic, id, ih, iw)
  879. * \param[in] filter (oc, ic, fd, fh, fw)
  880. * \param[out] dst (n, oc, od, oh, ow)
  881. */
  882. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
  883. _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;
  884. void deduce_layout(const TensorLayout& src, const TensorLayout& filter,
  885. TensorLayout& dst);
  886. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  887. const TensorLayout& filter,
  888. const TensorLayout& dst) = 0;
  889. protected:
  890. CanonizedFilterMeta check_exec(const TensorLayout& src,
  891. const TensorLayout& filter,
  892. const TensorLayout& dst,
  893. size_t workspace_in_bytes);
  894. };
  895. using Convolution3D = Convolution3DForward;
  896. class Convolution3DBackwardData
  897. : public Convolution3DBase,
  898. public detail::MultiAlgoOpr<Convolution3DBackwardData, 3> {
  899. DEF_OPR_IMPL(Convolution3DBackwardData, Convolution3DBase, 2, 1);
  900. public:
  901. /**
  902. * \param[in] filter (oc, ic, fd, fh, fw)
  903. * \param[in] diff (n, oc, od, oh, ow)
  904. * \param[out] grad (n, ic, id, ih, iw)
  905. */
  906. virtual void exec(_megdnn_tensor_in filter, _megdnn_tensor_in diff,
  907. _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
  908. virtual size_t get_workspace_in_bytes(const TensorLayout& filter,
  909. const TensorLayout& diff,
  910. const TensorLayout& grad) = 0;
  911. void deduce_layout(const TensorLayout& filter, const TensorLayout& diff,
  912. TensorLayout& grad);
  913. protected:
  914. CanonizedFilterMeta check_exec(const TensorLayout& filter,
  915. const TensorLayout& diff,
  916. const TensorLayout& grad,
  917. size_t workspace_in_bytes);
  918. };
  919. class Convolution3DBackwardFilter
  920. : public Convolution3DBase,
  921. public detail::MultiAlgoOpr<Convolution3DBackwardFilter, 3> {
  922. DEF_OPR_IMPL(Convolution3DBackwardFilter, Convolution3DBase, 2, 1);
  923. public:
  924. /**
  925. * \param[in] src (n, ic, id, ih, iw)
  926. * \param[in] diff (n, oc, od, oh, ow)
  927. * \param[out] grad (oc, ic, fd, fh, fw)
  928. */
  929. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in diff,
  930. _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
  931. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  932. const TensorLayout& diff,
  933. const TensorLayout& grad) = 0;
  934. protected:
  935. CanonizedFilterMeta check_exec(const TensorLayout& src,
  936. const TensorLayout& diff,
  937. const TensorLayout& grad,
  938. size_t workspace_in_bytes);
  939. };
  940. class LocalShareBase : public OperatorBase {
  941. DEF_OPR_IMPL_CTOR(LocalShareBase, OperatorBase);
  942. DEF_OPR_PARAM(LocalShare);
  943. protected:
  944. void deduce_layout_fwd(const TensorLayout& src, const TensorLayout& filter,
  945. TensorLayout& dst);
  946. void check_layout_fwd(const TensorLayout& src, const TensorLayout& filter,
  947. const TensorLayout& dst);
  948. };
  949. class LocalShareForward : public LocalShareBase,
  950. public detail::MultiAlgoOpr<LocalShareForward, 3> {
  951. DEF_OPR_IMPL(LocalShareForward, LocalShareBase, 2, 1);
  952. public:
  953. /**
  954. * \param[in] src (N, IC, IH, IW)
  955. * \param[in] filter (G, spatial_groups_h, spatial_groups_w, IC / G,
  956. * FH, FW, OC / G)
  957. * \param[out] dst (N, OC, OH, OW)
  958. */
  959. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
  960. _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;
  961. /**
  962. * \brief deduce layout of the ouput tensor
  963. */
  964. void deduce_layout(const TensorLayout& src, const TensorLayout& filter,
  965. TensorLayout& dst);
  966. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  967. const TensorLayout& filter,
  968. const TensorLayout& dst) = 0;
  969. protected:
  970. void check_exec(const TensorLayout& src, const TensorLayout& filter,
  971. const TensorLayout& dst, size_t workspace_in_bytes);
  972. };
  973. using LocalShare = LocalShareForward;
  974. class LocalShareBackwardData
  975. : public LocalShareBase,
  976. public detail::MultiAlgoOpr<LocalShareBackwardData, 3> {
  977. DEF_OPR_IMPL(LocalShareBackwardData, LocalShareBase, 2, 1);
  978. public:
  979. /**
  980. * \param[in] filter (G, spatial_groups_h, spatial_groups_w, IC / G,
  981. * FH, FW, OC / G)
  982. * \param[in] diff (N, OC, OH, OW)
  983. * \param[out] grad (N, IC, IH, IW)
  984. */
  985. virtual void exec(_megdnn_tensor_in filter, _megdnn_tensor_in diff,
  986. _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
  987. virtual size_t get_workspace_in_bytes(const TensorLayout& filter,
  988. const TensorLayout& diff,
  989. const TensorLayout& grad) = 0;
  990. void deduce_layout(const TensorLayout& filter, const TensorLayout& diff,
  991. TensorLayout& grad);
  992. protected:
  993. void check_exec(const TensorLayout& filter, const TensorLayout& diff,
  994. const TensorLayout& grad, size_t workspace_in_bytes);
  995. };
  996. class LocalShareBackwardFilter
  997. : public LocalShareBase,
  998. public detail::MultiAlgoOpr<LocalShareBackwardFilter, 3> {
  999. DEF_OPR_IMPL(LocalShareBackwardFilter, LocalShareBase, 2, 1);
  1000. public:
  1001. /**
  1002. * \param[in] src (N, IC, IH, IW)
  1003. * \param[in] diff (N, OC, OH, OW)
  1004. * \param[out] grad (G, spatial_groups_h, spatial_groups_w, IC / G,
  1005. * FH, FW, OC / G)
  1006. */
  1007. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in diff,
  1008. _megdnn_tensor_out grad, _megdnn_workspace workspace) = 0;
  1009. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  1010. const TensorLayout& diff,
  1011. const TensorLayout& grad) = 0;
  1012. protected:
  1013. void check_exec(const TensorLayout& src, const TensorLayout& diff,
  1014. const TensorLayout& grad, size_t workspace_in_bytes);
  1015. };
  1016. class ROIAlignBase : public OperatorBase {
  1017. DEF_OPR_IMPL_CTOR(ROIAlignBase, OperatorBase);
  1018. DEF_OPR_PARAM(ROIAlign);
  1019. protected:
  1020. void deduce_layout_fwd(const TensorLayout& src, const TensorLayout& rois,
  1021. TensorLayout& dst, TensorLayout& index);
  1022. void check_layout_fwd(const TensorLayout& src, const TensorLayout& rois,
  1023. const TensorLayout& dst, const TensorLayout& index);
  1024. };
  1025. class ROIAlignForward : public ROIAlignBase {
  1026. DEF_OPR_IMPL(ROIAlignForward, ROIAlignBase, 2, 2);
  1027. public:
  1028. /**
  1029. * \param[in] src (n, c, ih, iw)
  1030. * \param[in] rois (m, 5)
  1031. * \param[out] dst (m, c, oh, ow)
  1032. * \param[out] index (m, c, oh, ow) if mode is MAX, (0) if mode is AVERAGE
  1033. *
  1034. * Note that rois(, 0) denotes the input image index. We store it as
  1035. * a float, but it should be an integer instead.
  1036. *
  1037. * index is a temporary tensor to facilitate its backward operator.
  1038. * It is used to store argmax indicex in MAX mode, and it is not used
  1039. * in AVERAGE mode.
  1040. */
  1041. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in rois,
  1042. _megdnn_tensor_out dst, _megdnn_tensor_out index,
  1043. _megdnn_workspace workspace) = 0;
  1044. void deduce_layout(const TensorLayout& src, const TensorLayout& rois,
  1045. TensorLayout& dst, TensorLayout& index);
  1046. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  1047. const TensorLayout& rois,
  1048. const TensorLayout& dst,
  1049. const TensorLayout& index) = 0;
  1050. protected:
  1051. void check_exec(const TensorLayout& src, const TensorLayout& rois,
  1052. const TensorLayout& dst, const TensorLayout& index,
  1053. size_t workspace_in_bytes);
  1054. };
  1055. using ROIAlign = ROIAlignForward;
  1056. class ROIAlignBackward : public ROIAlignBase {
  1057. DEF_OPR_IMPL(ROIAlignBackward, ROIAlignBase, 3, 1);
  1058. public:
  1059. /**
  1060. * \param[in] diff the backpropagated gradient wrt. dst
  1061. * \param[in] rois the `rois' parameter in ROIAlignForward::exec
  1062. * \param[in] index the `index' parameter in ROIAlignForward::exec
  1063. * \param[out] grad the backpropagated gradient wrt. src
  1064. */
  1065. virtual void exec(_megdnn_tensor_in diff, _megdnn_tensor_in rois,
  1066. _megdnn_tensor_in index, _megdnn_tensor_out grad,
  1067. _megdnn_workspace workspace) = 0;
  1068. virtual size_t get_workspace_in_bytes(const TensorLayout& diff,
  1069. const TensorLayout& rois,
  1070. const TensorLayout& index,
  1071. const TensorLayout& grad) = 0;
  1072. protected:
  1073. void check_exec(const TensorLayout& diff, const TensorLayout& rois,
  1074. const TensorLayout& index, const TensorLayout& grad,
  1075. size_t workspace_in_bytes);
  1076. };
  1077. class DeformableConvBase : public OperatorBase {
  1078. DEF_OPR_IMPL_CTOR(DeformableConvBase, OperatorBase);
  1079. DEF_OPR_PARAM(Convolution);
  1080. public:
  1081. static constexpr size_t MAX_SPATIAL_DIM = 2;
  1082. struct CanonizedFilterMeta : Convolution::CanonizedFilterMeta {
  1083. uint32_t deformable_group;
  1084. };
  1085. protected:
  1086. CanonizedFilterMeta make_canonized_filter_meta(
  1087. size_t src_ndim, const TensorLayout& filter,
  1088. const TensorLayout& offset) const;
  1089. void deduce_layout_fwd(const TensorLayout& im, const TensorLayout& filter,
  1090. const TensorLayout& mask, const TensorLayout& offset,
  1091. TensorLayout& dst);
  1092. void check_layout_fwd(const TensorLayout& src, const TensorLayout& filter,
  1093. const TensorLayout& mask, const TensorLayout& offset,
  1094. const TensorLayout& dst);
  1095. };
  1096. class DeformableConvForward
  1097. : public DeformableConvBase,
  1098. public detail::MultiAlgoOpr<DeformableConvForward, 5> {
  1099. DEF_OPR_IMPL(DeformableConvForward, DeformableConvBase, 4, 1);
  1100. public:
  1101. /**
  1102. * \param[in] im (n, ic, ih, iw)
  1103. * \param[in] filter (oc, ic, fh, fw)
  1104. * \param[in] offset (dg, 2, fh, fw, oh, ow)
  1105. * \param[in] mask (dg, fh, fw, oh, ow)
  1106. * \param[out] dst (n, oc, oh, ow)
  1107. */
  1108. virtual void exec(_megdnn_tensor_in im, _megdnn_tensor_in filter,
  1109. _megdnn_tensor_in offset, _megdnn_tensor_in mask,
  1110. _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;
  1111. void deduce_layout(const TensorLayout& im, const TensorLayout& filter,
  1112. const TensorLayout& offset, const TensorLayout& mask,
  1113. TensorLayout& dst);
  1114. virtual size_t get_workspace_in_bytes(const TensorLayout& im,
  1115. const TensorLayout& filter,
  1116. const TensorLayout& offset,
  1117. const TensorLayout& mask,
  1118. const TensorLayout& dst) = 0;
  1119. protected:
  1120. CanonizedFilterMeta check_exec(const TensorLayout& im,
  1121. const TensorLayout& filter,
  1122. const TensorLayout& offset,
  1123. const TensorLayout& mask,
  1124. const TensorLayout& dst,
  1125. size_t workspace_in_bytes);
  1126. };
  1127. using DeformableConv = DeformableConvForward;
  1128. /**
  1129. * \brief DeformableConvBackwardFilter operator.
  1130. *
  1131. * Calculating the gradient wrt. convolution filter.
  1132. */
  1133. class DeformableConvBackwardFilter
  1134. : public DeformableConvBase,
  1135. public detail::MultiAlgoOpr<DeformableConvBackwardFilter, 5> {
  1136. DEF_OPR_IMPL(DeformableConvBackwardFilter, DeformableConvBase, 4, 1);
  1137. public:
  1138. /**
  1139. * \param[in] im (oc, ic, fh, fw)
  1140. * \param[in] offset (dg, 2, fh, fw, oh, ow)
  1141. * \param[in] mask (dg, fh, fw, oh, ow)
  1142. * \param[in] out_grad (n, oc, oh, ow)
  1143. * \param[out] filter_grad (oc, ic, ih, iw)
  1144. */
  1145. virtual void exec(_megdnn_tensor_in im, _megdnn_tensor_in offset,
  1146. _megdnn_tensor_in mask, _megdnn_tensor_in out_grad,
  1147. _megdnn_tensor_out filter_grad,
  1148. _megdnn_workspace workspace) = 0;
  1149. virtual size_t get_workspace_in_bytes(const TensorLayout& im,
  1150. const TensorLayout& offset,
  1151. const TensorLayout& mask,
  1152. const TensorLayout& out_grad,
  1153. const TensorLayout& filter_grad) = 0;
  1154. void deduce_layout(const TensorLayout& im, const TensorLayout& offset,
  1155. const TensorLayout& mask, const TensorLayout& out_grad,
  1156. TensorLayout& filter_grad);
  1157. protected:
  1158. CanonizedFilterMeta check_exec(const TensorLayout& im,
  1159. const TensorLayout& offset,
  1160. const TensorLayout& mask,
  1161. const TensorLayout& out_grad,
  1162. const TensorLayout& filter_grad,
  1163. size_t workspace_in_bytes);
  1164. };
  1165. /**
  1166. * \brief DeformableConvBackwardData operator.
  1167. *
  1168. * Calculating the gradient wrt. convolution input data, offset and mask.
  1169. */
  1170. class DeformableConvBackwardData
  1171. : public DeformableConvBase,
  1172. public detail::MultiAlgoOpr<DeformableConvBackwardData, 8> {
  1173. DEF_OPR_IMPL(DeformableConvBackwardData, DeformableConvBase, 5, 3);
  1174. public:
  1175. /**
  1176. * \param[in] im (oc, ic, fh, fw)
  1177. * \param[in] filter (oc, ic, fh, fw)
  1178. * \param[in] offset (dg, 2, fh, fw, oh, ow)
  1179. * \param[in] mask (dg, fh, fw, oh, ow)
  1180. * \param[in] out_grad (n, oc, oh, ow)
  1181. * \param[out] im_grad (n, ic, ih, iw)
  1182. * \param[out] offset_grad (dg, 2, fh, fw, oh, ow)
  1183. * \param[out] mask_grad (dg, fh, fw, oh, ow)
  1184. */
  1185. virtual void exec(_megdnn_tensor_in im, _megdnn_tensor_in filter,
  1186. _megdnn_tensor_in offset, _megdnn_tensor_in mask,
  1187. _megdnn_tensor_in out_grad, _megdnn_tensor_out im_grad,
  1188. _megdnn_tensor_out offset_grad,
  1189. _megdnn_tensor_out mask_grad,
  1190. _megdnn_workspace workspace) = 0;
  1191. virtual size_t get_workspace_in_bytes(
  1192. const TensorLayout& im, const TensorLayout& filter,
  1193. const TensorLayout& offset, const TensorLayout& mask,
  1194. const TensorLayout& out_grad, const TensorLayout& im_grad,
  1195. const TensorLayout& offset_grad, const TensorLayout& mask_grad) = 0;
  1196. void deduce_layout(const TensorLayout& im, const TensorLayout& filter,
  1197. const TensorLayout& offset, const TensorLayout& mask,
  1198. const TensorLayout& out_grad, TensorLayout& im_grad,
  1199. TensorLayout& offset_grad, TensorLayout& mask_grad);
  1200. protected:
  1201. CanonizedFilterMeta check_exec(
  1202. const TensorLayout& im, const TensorLayout& filter,
  1203. const TensorLayout& offset, const TensorLayout& mask,
  1204. const TensorLayout& out_grad, const TensorLayout& im_grad,
  1205. const TensorLayout& offset_grad, const TensorLayout& mask_grad,
  1206. size_t workspace_in_bytes);
  1207. };
  1208. class DeformablePSROIPoolingBase : public OperatorBase {
  1209. DEF_OPR_IMPL_CTOR(DeformablePSROIPoolingBase, OperatorBase);
  1210. DEF_OPR_PARAM(DeformablePSROIPooling);
  1211. protected:
  1212. void deduce_layout_fwd(const TensorLayout& data, const TensorLayout& trans,
  1213. const TensorLayout& rois, TensorLayout& out_data,
  1214. TensorLayout& out_count);
  1215. void check_layout_fwd(const TensorLayout& data, const TensorLayout& trans,
  1216. const TensorLayout& rois,
  1217. const TensorLayout& out_data,
  1218. const TensorLayout& out_count,
  1219. size_t workspace_in_bytes);
  1220. };
  1221. class DeformablePSROIPoolingForward : public DeformablePSROIPoolingBase {
  1222. DEF_OPR_IMPL(DeformablePSROIPoolingForward, DeformablePSROIPoolingBase, 3,
  1223. 2);
  1224. public:
  1225. /**
  1226. * \param[in] data (oc, ic, ih, iw)
  1227. * \param[in] rois (xx, xx, xx, xx)
  1228. * \param[in] trans (oc, ic, fh, fw)
  1229. * \param[out] out_data ( n, ic, ih, iw)
  1230. * \param[out] out_count ( n, ic, ih, iw)
  1231. */
  1232. virtual size_t get_workspace_in_bytes(const TensorLayout& data,
  1233. const TensorLayout& rois,
  1234. const TensorLayout& trans,
  1235. const TensorLayout& out_data,
  1236. const TensorLayout& out_count) = 0;
  1237. virtual void exec(_megdnn_tensor_in data, _megdnn_tensor_in rois,
  1238. _megdnn_tensor_in trans, _megdnn_tensor_out out_data,
  1239. _megdnn_tensor_out out_count,
  1240. _megdnn_workspace workspace) = 0;
  1241. void deduce_layout(const TensorLayout& data, const TensorLayout& rois,
  1242. const TensorLayout& trans, TensorLayout& out_data,
  1243. TensorLayout& out_count);
  1244. void check_exec(const TensorLayout& data, const TensorLayout& rois,
  1245. const TensorLayout& trans, const TensorLayout& out_data,
  1246. const TensorLayout& out_count, size_t workspace_in_bytes);
  1247. };
  1248. using DeformablePSROIPooling = DeformablePSROIPoolingForward;
  1249. class DeformablePSROIPoolingBackward : public DeformablePSROIPoolingBase {
  1250. DEF_OPR_IMPL(DeformablePSROIPoolingBackward, DeformablePSROIPoolingBase, 5,
  1251. 2);
  1252. public:
  1253. /**
  1254. * \param[in] data (oc, ic, ih, iw)
  1255. * \param[in] rois (xx, xx, xx, xx)
  1256. * \param[in] trans (oc, ic, fh, fw)
  1257. * \param[in] out_diff (xx, xx, xx, xx)
  1258. * \param[in] out_count (xx, xx, xx, xx)
  1259. * \param[out] data_diff ( n, ic, ih, iw)
  1260. * \param[out] trans_diff ( n, ic, ih, iw)
  1261. */
  1262. virtual void exec(_megdnn_tensor_in data, _megdnn_tensor_in rois,
  1263. _megdnn_tensor_in trans, _megdnn_tensor_in out_diff,
  1264. _megdnn_tensor_in out_count, _megdnn_tensor_out data_diff,
  1265. _megdnn_tensor_out trans_diff,
  1266. _megdnn_workspace workspace) = 0;
  1267. virtual size_t get_workspace_in_bytes(const TensorLayout& data,
  1268. const TensorLayout& rois,
  1269. const TensorLayout& trans,
  1270. const TensorLayout& out_diff,
  1271. const TensorLayout& out_count,
  1272. const TensorLayout& data_diff,
  1273. const TensorLayout& trans_diff) = 0;
  1274. void check_exec(const TensorLayout& data, const TensorLayout& rois,
  1275. const TensorLayout& trans, const TensorLayout& out_diff,
  1276. const TensorLayout& out_count,
  1277. const TensorLayout& data_diff,
  1278. const TensorLayout& trans_diff, size_t workspace_in_bytes);
  1279. };
  1280. class BatchConvBiasForward
  1281. : public ConvolutionBase<param::BatchConvBias>,
  1282. public detail::MultiAlgoOpr<BatchConvBiasForward, 5> {
  1283. DEF_OPR_IMPL(BatchConvBiasForward, ConvolutionBase, 4, 1);
  1284. public:
  1285. virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
  1286. _megdnn_tensor_in bias, _megdnn_tensor_in z,
  1287. _megdnn_tensor_out dst, _megdnn_workspace workspace) = 0;
  1288. void deduce_dtype(DType src, DType filter, DType bias, DType z, DType& dst);
  1289. void deduce_layout(const TensorLayout& src, const TensorLayout& filter,
  1290. const TensorLayout& bias, const TensorLayout& z,
  1291. TensorLayout& dst);
  1292. virtual size_t get_workspace_in_bytes(const TensorLayout& src,
  1293. const TensorLayout& filter,
  1294. const TensorLayout& bias,
  1295. const TensorLayout& z,
  1296. const TensorLayout& dst) = 0;
  1297. protected:
  1298. CanonizedFilterMeta check_exec(const TensorLayout& src,
  1299. const TensorLayout& filter,
  1300. const TensorLayout& bias,
  1301. const TensorLayout& z,
  1302. const TensorLayout& dst,
  1303. size_t workspace_in_bytes);
  1304. };
  1305. using BatchConvBias = BatchConvBiasForward;
  1306. } // namespace megdnn
  1307. #include "megdnn/internal/opr_header_epilogue.h"
  1308. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台