You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

traced_module.py 89 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511
  1. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  2. #
  3. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  4. #
  5. # Unless required by applicable law or agreed to in writing,
  6. # software distributed under the License is distributed on an
  7. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  8. import builtins
  9. import collections
  10. import copy
  11. import fnmatch
  12. import functools
  13. import inspect
  14. import keyword
  15. import re
  16. import weakref
  17. from importlib import import_module
  18. from inspect import getcallargs, getmembers, isclass, ismethod
  19. from itertools import chain
  20. from types import FunctionType
  21. from typing import (
  22. Any,
  23. Callable,
  24. Dict,
  25. Iterable,
  26. List,
  27. Optional,
  28. Sequence,
  29. Tuple,
  30. Type,
  31. Union,
  32. )
  33. from .. import functional as F
  34. from .. import get_logger
  35. from .. import module as M
  36. from ..core._imperative_rt.core2 import Tensor as RawTensor
  37. from ..core._imperative_rt.core2 import (
  38. apply,
  39. is_tracing_module,
  40. set_module_tracing,
  41. unset_module_tracing,
  42. )
  43. from ..core._trace_option import set_symbolic_shape
  44. from ..core.ops.builtin import Copy
  45. from ..core.tensor.utils import isscalar, setscalar
  46. from ..module import Module
  47. from ..module import external as MExternal
  48. from ..module.qat import QATModule
  49. from ..quantization.fake_quant import LSQ, TQT, FakeQuantize, _FakeQuantize
  50. from ..quantization.observer import (
  51. ExponentialMovingAverageObserver,
  52. HistogramObserver,
  53. MinMaxObserver,
  54. Observer,
  55. PassiveObserver,
  56. SyncExponentialMovingAverageObserver,
  57. SyncMinMaxObserver,
  58. )
  59. from ..tensor import Tensor
  60. from ..version import __version__
  61. from .expr import (
  62. Apply,
  63. CallFunction,
  64. CallMethod,
  65. Constant,
  66. Expr,
  67. GetAttr,
  68. Input,
  69. get_suffix_name,
  70. is_apply_def,
  71. is_call_function,
  72. is_call_module,
  73. is_call_tensor_method,
  74. is_constant,
  75. is_getattr,
  76. is_input,
  77. )
  78. from .fake_quant import FakeQuantize as TM_FakeQuant
  79. from .module_tracer import (
  80. PatchedFn,
  81. Patcher,
  82. active_module_tracer,
  83. get_tensor_wrapable_method,
  84. module_tracer,
  85. set_active_module_tracer,
  86. )
  87. from .node import ModuleNode, Node, NodeMixin, TensorNode
  88. from .pytree import (
  89. USER_REGISTERED_CONTAINER_TYPE,
  90. USER_REGISTERED_LEAF_TYPE,
  91. ArgsIndex,
  92. TreeDef,
  93. _register_supported_type,
  94. tree_flatten,
  95. )
  96. from .serialization import (
  97. _ModuleState,
  98. load_apply_expr,
  99. load_call_module_expr,
  100. load_call_tensor_method_expr,
  101. load_functional,
  102. )
  103. from .tm_config import (
  104. _exclude_from_trace,
  105. _get_default_checker,
  106. _get_expr_checker,
  107. _graph_surgery_mode,
  108. _set_graph_surgery_mode,
  109. )
  110. from .utils import (
  111. _check_builtin_module_attr,
  112. _check_obj_attr,
  113. _convert_kwargs_to_args,
  114. replace_container_with_module_container,
  115. )
  116. logger = get_logger(__name__)
  117. def _is_builtin_name(name: str) -> bool:
  118. return (
  119. name in builtins.__dict__
  120. or name in keyword.kwlist
  121. or name in {"inf", "nan", "NoneType"}
  122. )
  123. def _is_leaf(node):
  124. assert isinstance(
  125. node, RawTensor
  126. ), 'doesn\'t support {} in return values, MUST use Tensor or use "register_supported_type" method to register self-defined type'.format(
  127. type(node)
  128. )
  129. return isinstance(node, RawTensor)
  130. def _node_to_tensor(*args, **kwargs):
  131. tensors = []
  132. nodes, tree_def = tree_flatten((args, kwargs))
  133. for n in nodes:
  134. if isinstance(n, TensorNode):
  135. if n.top_graph is not None:
  136. active_module_tracer().current_scope()._add_input(n)
  137. value = n.value
  138. if value is None:
  139. flag = _set_graph_surgery_mode(False)
  140. unset_module_tracing()
  141. value = F.zeros(shape=n._shape, dtype=n._dtype)
  142. set_module_tracing()
  143. _set_graph_surgery_mode(flag)
  144. orig_n = NodeMixin.get(value, None)
  145. if orig_n is None or "setitem" not in orig_n._name:
  146. NodeMixin.wrap_safe(value, n)
  147. tensors.append(value)
  148. else:
  149. tensors.append(n)
  150. tensors = tree_def.unflatten(tensors)
  151. return tensors
  152. def _tensor_to_node(tensors):
  153. if tensors is None:
  154. return None
  155. nodes = []
  156. tensors, out_def = tree_flatten(tensors)
  157. for t in tensors:
  158. if isinstance(t, Tensor):
  159. n = NodeMixin.get(t, None)
  160. if isinstance(n, TensorNode):
  161. n.value = t
  162. nodes.append(n)
  163. else:
  164. nodes.append(t)
  165. else:
  166. nodes.append(t)
  167. nodes = out_def.unflatten(nodes)
  168. return nodes
  169. def _name_setter(node: Node, new_name: str):
  170. surgery_mode = _set_graph_surgery_mode(False)
  171. graph = active_module_tracer().current_scope()
  172. if node.top_graph is not None:
  173. top_graph = active_module_tracer().top_scope()
  174. if node is top_graph._namespace.used_names.get(node._name, None):
  175. graph = top_graph
  176. else:
  177. graph = node.top_graph
  178. assert (
  179. graph._namespace.used_names.get(new_name, None) is None
  180. ), "The name(%s) is already in use. Please try a different one again." % (new_name)
  181. graph._namespace.unassociate_name_with_obj(node)
  182. node._name = graph._namespace.create_unique_name(new_name, node)
  183. _set_graph_surgery_mode(surgery_mode)
  184. def _wrap_method_to_tensor_node():
  185. def _any_method(name, func):
  186. def _any(*args, **kwargs):
  187. if is_tracing_module() and _graph_surgery_mode():
  188. args, kwargs = _node_to_tensor(*args, **kwargs)
  189. attr = getattr(args[0], name)
  190. outs = attr
  191. if callable(attr):
  192. outs = attr(*(args[1:]), **kwargs)
  193. if name == "__setitem__":
  194. _node_to_tensor(outs)
  195. return None
  196. outs = _tensor_to_node(outs)
  197. return outs
  198. else:
  199. outs = func
  200. if callable(func):
  201. outs = func(*args, **kwargs)
  202. if isinstance(func, property):
  203. outs = func.__get__(*args, **kwargs)
  204. return outs
  205. return _any
  206. tensor_method_patch = []
  207. for method in get_tensor_wrapable_method():
  208. patch = PatchedFn(TensorNode, method)
  209. if type(getattr(Tensor, method)) == property:
  210. # Only support property.getter
  211. patch.set_func(property(_any_method(method, patch.origin_fn)))
  212. else:
  213. patch.set_func(_any_method(method, patch.origin_fn))
  214. tensor_method_patch.append(patch)
  215. patch = PatchedFn(Node, "name")
  216. patch.set_func(property(patch.origin_fn.fget, _name_setter))
  217. tensor_method_patch.append(patch)
  218. return tensor_method_patch
  219. def _convert_node_and_tensor(orig_func):
  220. @functools.wraps(orig_func)
  221. def _convert(*args, **kwargs):
  222. if is_tracing_module() and _graph_surgery_mode():
  223. args, kwargs = _node_to_tensor(*args, **kwargs)
  224. rst = orig_func(*args, **kwargs, method_func=_convert)
  225. rst = _tensor_to_node(rst)
  226. return rst
  227. else:
  228. rst = orig_func(*args, **kwargs)
  229. return rst
  230. return _convert
  231. def _wrap_mnode_getattr(orig_getattr):
  232. @functools.wraps(orig_getattr)
  233. def wraped_fn(self, name):
  234. if is_tracing_module() and _graph_surgery_mode():
  235. obj = self.owner
  236. current_graph = active_module_tracer().current_scope()
  237. if self.top_graph is not None:
  238. current_graph._add_input(self)
  239. attr = getattr(obj, name)
  240. node = attr
  241. if not isinstance(attr, TracedModuleBuilder):
  242. if isinstance(attr, Module):
  243. attr = TracedModuleBuilder(attr)
  244. setattr(obj, name, attr)
  245. if isinstance(attr, (NodeMixin, RawTensor)):
  246. NodeMixin.wrap(
  247. attr,
  248. lambda: GetAttr.make(
  249. self,
  250. type=NodeMixin.get_wrapped_type(attr),
  251. attr_name=name,
  252. name="",
  253. ),
  254. )
  255. if isinstance(attr, (NodeMixin, RawTensor)):
  256. node = NodeMixin.get(attr)
  257. if isinstance(node, ModuleNode) and isinstance(attr, (NodeMixin, Module)):
  258. node._owner = weakref.ref(attr)
  259. return node
  260. else:
  261. node = object.__getattribute__(self, name)
  262. return node
  263. return wraped_fn
  264. def _wrap_mnode_call(orig_call):
  265. @functools.wraps(orig_call)
  266. def wraped_fn(self, *args, **kwargs):
  267. if is_tracing_module() and _graph_surgery_mode():
  268. obj = self.owner
  269. if self.top_graph is not None:
  270. active_module_tracer().current_scope()._add_input(self)
  271. rst = obj(*args, **kwargs)
  272. else:
  273. raise TypeError("'ModuleNode' object is not callable")
  274. return rst
  275. return wraped_fn
  276. class _InsertExprs:
  277. def __init__(self, graph, expr: Optional[Expr] = None):
  278. self.graph = graph
  279. while graph.top_graph is not None:
  280. graph = graph.top_graph
  281. assert graph.inputs[0].owner._is_top
  282. self.root_graph = graph
  283. self.global_scope = InternalGraph(self.graph._name, self.graph._qualname)
  284. self.global_scope._namespace.merge(self.graph._namespace)
  285. self.expr = expr
  286. self._tensor_method_patch = None
  287. def __enter__(self):
  288. self.use_sym_shape = set_symbolic_shape(True)
  289. node_id, expr_id = self.root_graph._total_ids
  290. Node._set_next_id(node_id)
  291. Expr._set_next_id(expr_id)
  292. set_module_tracing()
  293. _set_graph_surgery_mode(True)
  294. assert active_module_tracer() is None
  295. set_active_module_tracer(
  296. module_tracer(lambda x: _convert_node_and_tensor(_wrapped_function(x)))
  297. )
  298. active_module_tracer().patcher.__enter__()
  299. for cls, name, func in [
  300. [ModuleNode, "__getattr__", _wrap_mnode_getattr],
  301. [ModuleNode, "__call__", _wrap_mnode_call],
  302. [TracedModuleBuilder, "__call__", _convert_node_and_tensor],
  303. ]:
  304. active_module_tracer().patcher.patch_function(cls, name, func)
  305. self._tensor_method_patch = _wrap_method_to_tensor_node()
  306. active_module_tracer().push_scope(self.global_scope)
  307. def __exit__(self, ty, va, tr):
  308. if va is not None:
  309. return False
  310. active_module_tracer().patcher.__exit__(ty, va, tr)
  311. while self._tensor_method_patch:
  312. pf = self._tensor_method_patch.pop()
  313. pf.set_func(pf.origin_fn)
  314. # delete ModuleNode.__call__ to avoid entering the
  315. # ModuleNode.__init__ method when call a ModuleNode object.
  316. delattr(ModuleNode, "__call__")
  317. module = self.graph.inputs[0].owner
  318. def build_traced_module(
  319. module: TracedModuleBuilder, target_module: TracedModule
  320. ):
  321. for k, v in module.__dict__.items():
  322. if isinstance(v, TracedModuleBuilder):
  323. traced_v = v.build()
  324. build_traced_module(v, traced_v)
  325. setattr(target_module, k, traced_v)
  326. build_traced_module(module, module)
  327. set_symbolic_shape(self.use_sym_shape)
  328. _set_graph_surgery_mode(False)
  329. set_active_module_tracer(None)
  330. unset_module_tracing()
  331. extra_inp_nodes = set(self.global_scope.inputs)
  332. max_inp_expr_idx = -1
  333. for node in extra_inp_nodes:
  334. assert (
  335. node.top_graph == self.graph
  336. ), "The input node ({}) is not in the graph ({})".format(node, self.graph)
  337. if node.expr in self.graph._exprs:
  338. max_inp_expr_idx = max(
  339. max_inp_expr_idx, self.graph._exprs.index(node.expr)
  340. )
  341. max_inp_expr_idx += 1
  342. insert_index = -1
  343. if self.expr in self.graph._exprs:
  344. insert_index = self.graph._exprs.index(self.expr)
  345. insert_index += 1
  346. if insert_index < max_inp_expr_idx:
  347. insert_index = max_inp_expr_idx
  348. for expr in self.global_scope._exprs:
  349. self.graph._exprs.insert(insert_index, expr)
  350. insert_index += 1
  351. self.graph._namespace.merge(self.global_scope._namespace)
  352. self.root_graph._total_ids = (Node._get_next_id(), Expr._get_next_id())
  353. self.root_graph.inputs[0].owner._update_ref()
  354. for node in self.root_graph.nodes():
  355. if isinstance(node, TensorNode):
  356. node.value = None
  357. return True
  358. class NameSpace:
  359. def __init__(self, name, qualname):
  360. self.name = name
  361. self.qualname = qualname
  362. self._used_names = {}
  363. def create_unique_name(self, name: str, node: Any = None) -> str:
  364. assert isinstance(name, str), "The name must be a string"
  365. if name in self._used_names and (self._used_names[name] is node):
  366. return name
  367. name = re.sub("[^0-9a-zA-Z_]+", "_", name)
  368. if name[0].isdigit():
  369. name = "_{}".format(name)
  370. while (
  371. name in self._used_names and self._used_names[name] is not None
  372. ) or _is_builtin_name(name):
  373. match = re.match(r"(.*)_(\d+)$", name)
  374. if match is None:
  375. name = name + "_1"
  376. else:
  377. base, num = match.group(1, 2)
  378. name = "{}_{}".format(base, int(num) + 1)
  379. self._used_names.setdefault(name)
  380. if node is not None:
  381. self.associate_name_with_obj(name, node)
  382. return name
  383. def auto_naming_for_outputs(self, expr: Expr):
  384. _add_suffix = lambda x: x + "_out"
  385. if is_call_module(expr):
  386. call_node = expr.inputs[0]
  387. qualname = "%s.[out]" % (call_node.qualname)
  388. name = call_node.name
  389. elif is_call_tensor_method(expr):
  390. name = expr.method.strip("_")
  391. qualname = "{}.[{}]".format(
  392. self.qualname, self.create_unique_name("method_%s" % (name)),
  393. )
  394. elif is_call_function(expr):
  395. name = expr.func.__name__
  396. qualname = "{}.[{}]".format(
  397. self.qualname, self.create_unique_name("func_%s" % name),
  398. )
  399. elif is_apply_def(expr):
  400. name = str(expr.opdef).lower()
  401. qualname = "{}.[{}]".format(
  402. self.qualname, self.create_unique_name("def_%s" % name),
  403. )
  404. elif is_getattr(expr):
  405. qualname = "{}.{}".format(expr.inputs[0].qualname, expr.name)
  406. name = get_suffix_name(self.qualname, qualname)
  407. _add_suffix = lambda x: x
  408. elif is_constant(expr) or is_input(expr):
  409. name = (
  410. expr.name if expr.name else "const_" + type(expr.value).__name__.lower()
  411. )
  412. qualname = "{}.[{}]".format(self.qualname, name)
  413. _add_suffix = lambda x: x
  414. for node in expr.outputs:
  415. cur_name = node._name if node._name else _add_suffix(name)
  416. node._name = self.create_unique_name(cur_name, node)
  417. if node._qualname == "":
  418. node._qualname = qualname
  419. assert get_suffix_name(self.qualname, qualname) is not None
  420. def merge(self, other: "NameSpace"):
  421. self._used_names.update(other.used_names)
  422. def associate_name_with_obj(self, name: str, node: Node):
  423. assert name in self.used_names
  424. assert self.used_names[name] is None, "The name(%s) is already in use" % (name)
  425. self._used_names[name] = node
  426. def unassociate_name_with_obj(self, node: Node):
  427. assert node.name in self.used_names
  428. # assert self.used_names[node.name] is node
  429. self._used_names[node.name] = None
  430. @property
  431. def used_names(self):
  432. return self._used_names
  433. class InternalGraph:
  434. r"""``InternalGraph`` is the main data structure used in the TracedModule.
  435. It is used to represent the execution procedure of Module's forward method.
  436. For example, the following code
  437. .. code-block::
  438. import megengine.random as rand
  439. import megengine.functional as F
  440. import megengine.module as M
  441. import megengine.traced_module as tm
  442. class MyModule(M.Module):
  443. def __init__(self):
  444. super().__init__()
  445. self.param = rand.normal(size=(3, 4))
  446. self.linear = M.Linear(4, 5)
  447. def forward(self, x):
  448. return F.relu(self.linear(x + self.param))
  449. net = MyModule()
  450. inp = F.zeros(shape = (3, 4))
  451. traced_module = tm.trace_module(net, inp)
  452. Will produce the following ``InternalGraph``::
  453. print(traced_module.graph)
  454. .. code-block:: text
  455. MyModule.Graph (self, x) {
  456. %2: linear = getattr(self, "linear") -> (Linear)
  457. %3: param = getattr(self, "param") -> (Tensor)
  458. %4: add_out = x.__add__(param, )
  459. %5: linear_out = linear(add_out, )
  460. %6: relu_out = nn.relu(linear_out, )
  461. return relu_out
  462. }
  463. """
  464. _exprs = None # type: List[Expr]
  465. _inputs = None # type: List[Node]
  466. _outputs = None # type: List[Node]
  467. _top_graph = None # type: InternalGraph
  468. _total_ids = None # type: List[int]
  469. def __init__(self, name: str, qualname: str):
  470. self._exprs = []
  471. self._inputs = []
  472. self._outputs = []
  473. self._watch_point = []
  474. self._end_point = []
  475. self._namespace = NameSpace(name, qualname)
  476. self._rst = collections.defaultdict(list)
  477. self._name = name
  478. self._qualname = qualname
  479. def _insert(self, expr):
  480. self._exprs.append(expr)
  481. @property
  482. def name(self) -> str:
  483. r"""Get the name of this graph."""
  484. return self._name
  485. @name.setter
  486. def name(self, new_name: str):
  487. r"""Set a new name to this graph."""
  488. mod = self.inputs[0].owner
  489. graph = self.top_graph
  490. assert graph is not None or mod._is_top, "The parent graph cannot be None."
  491. if graph is not None:
  492. assert graph._namespace.used_names.get(new_name, None) is None, (
  493. "The name(%s) is already in use. Please try a different one again."
  494. % (new_name)
  495. )
  496. new_name = graph._namespace.create_unique_name(new_name, self)
  497. self._name = new_name
  498. @property
  499. def qualname(self) -> str:
  500. r"""Get the `qualname` of this graph. The `qualname` can be used to get the
  501. submodule from the traced Module or Module.
  502. Example:
  503. .. code-block::
  504. import megengine.module as M
  505. import megengine.traced_module as tm
  506. import megengine as mge
  507. class block(M.Module):
  508. def __init__(self):
  509. super().__init__()
  510. self.relu = M.ReLU()
  511. def forward(self, x):
  512. return self.relu(x)
  513. class module(M.Module):
  514. def __init__(self):
  515. super().__init__()
  516. self.block = block()
  517. def forward(self, x):
  518. x = self.block(x)
  519. return x
  520. net = module()
  521. traced_net = tm.trace_module(net, mge.Tensor([0.]))
  522. qualname = traced_net.block.graph.qualname # qualname = "module.block"
  523. qualname = qualname.split(".", 1)[-1] # qualname = "block"
  524. assert qualname in list(map(lambda x: x[0], net.named_modules()))
  525. assert qualname in list(map(lambda x: x[0], traced_net.named_modules()))
  526. """
  527. return self._qualname
  528. @property
  529. def inputs(self) -> List[Node]:
  530. r"""Get the list of input Nodes of this graph.
  531. Returns:
  532. A list of ``Node``.
  533. """
  534. return self._inputs
  535. @property
  536. def outputs(self) -> List[Node]:
  537. r"""Get the list of output Nodes of this graph.
  538. Returns:
  539. A list of ``Node``.
  540. """
  541. return self._outputs
  542. @property
  543. def top_graph(self):
  544. r"""Get the parent graph of this graph.
  545. Returns:
  546. An ``InternalGraph``.
  547. """
  548. if self._top_graph:
  549. return self._top_graph()
  550. return None
  551. def exprs(self, recursive=True):
  552. r"""Get the Exprs that constitute this graph.
  553. Args:
  554. recursive: whether to get the Exprs in the subgraph.
  555. Default: True
  556. Returns:
  557. A ``ExprFilter`` containing all Exprs of this graph.
  558. """
  559. return ExprFilter(_expr_iter(self, recursive))
  560. def nodes(self, recursive=True):
  561. r"""Get the Nodes that constitute this graph.
  562. Args:
  563. recursive: whether to get the Nodes in the subgraph.
  564. Default: True
  565. Returns:
  566. A ``NodeFilter`` containing all Nodes of this graph.
  567. """
  568. return NodeFilter(_node_iter(self, recursive))
  569. def get_function_by_type(self, func: Callable = None, recursive=True):
  570. r"""Filter Exprs by the type of ``CallFunction``.
  571. Args:
  572. func: a built-in function, such as ``F.relu``.
  573. recursive: whether to get the Exprs in the subgraph.
  574. Default: True
  575. Returns:
  576. A :class:`~.TracedModule.ExprFilterCallFunction`.
  577. """
  578. return self.exprs(recursive).call_function(func)
  579. def get_method_by_type(self, method: str = None, recursive=True):
  580. r"""Filter Exprs by the type of ``CallMethod``.
  581. Args:
  582. method: a method string, such as "__add__".
  583. recursive: whether to get the Exprs in the subgraph.
  584. Default: True
  585. Returns:
  586. A :class:`~.TracedModule.ExprFilterCallMethod`.
  587. """
  588. return self.exprs(recursive).call_method(method)
  589. def get_expr_by_id(self, expr_id: List[int] = None, recursive=True):
  590. r"""Filter Exprs by their ``id``.
  591. Args:
  592. expr_id: a list of :class:`int`.
  593. recursive: whether to get the Exprs in the subgraph.
  594. Default: True
  595. Returns:
  596. A :class:`~.TracedModule.ExprFilterExprId`.
  597. """
  598. return self.exprs(recursive).expr_id(expr_id)
  599. def get_module_by_type(self, module_cls: Module, recursive=True):
  600. r"""Filter Nodes by the ``module_type`` of ``ModuleNode``.
  601. Args:
  602. module_cls: a subclass of :class:`~.Module`.
  603. recursive: whether to get the Nodes in the subgraph.
  604. Default: True
  605. Returns:
  606. A :class:`~.TracedModule.NodeFilterType`.
  607. """
  608. return self.nodes(recursive).type(module_cls)
  609. def get_node_by_id(self, node_id: List[int] = None, recursive=True):
  610. r"""Filter Nodes by their ``id``.
  611. The ``id`` of the ``Node`` can be obtained by the following code
  612. .. code-block::
  613. # node : Node
  614. print("{:i}".format(node))
  615. print(node.__format__("i"))
  616. # graph : InternalGraph
  617. print("{:i}".format(graph))
  618. print(graph.__format__("i"))
  619. Args:
  620. node_id: a list of :class:`int`.
  621. recursive: whether to get the Nodes in the subgraph.
  622. Default: True
  623. Returns:
  624. A :class:`~.TracedModule.NodeFilterNodeId`.
  625. """
  626. return self.nodes(recursive).node_id(node_id)
  627. def get_node_by_name(
  628. self, name: str = None, ignorecase: bool = True, recursive=True
  629. ):
  630. r"""Filter Nodes by their full name.
  631. The full name of the ``Node`` can be obtained by the following code
  632. .. code-block::
  633. # node : Node
  634. print("{:p}".format(node))
  635. print(node.__format__("p"))
  636. # graph : InternalGraph
  637. print("{:p}".format(graph))
  638. print(graph.__format__("p"))
  639. Args:
  640. name: a string in glob syntax that can contain ``?`` and
  641. ``*`` to match a single or arbitrary characters.
  642. ignorecase: whether to ignroe case.
  643. Default: True
  644. recursive: whether to get the Nodes in the subgraph.
  645. Default: True
  646. Returns:
  647. A :class:`~.TracedModule.NodeFilterName`.
  648. """
  649. return self.nodes(recursive).name(name, ignorecase)
  650. def _add_input(self, i):
  651. self._inputs.append(i)
  652. def _add_output(self, o):
  653. self._outputs.append(o)
  654. def get_dep_exprs(self, nodes: Sequence[Node]) -> List[Expr]:
  655. r"""Get the dependent Exprs of the ``nodes``.
  656. Args:
  657. nodes: a list of :class:`Node`.
  658. Returns:
  659. A list of dependent :class:`Expr`.
  660. """
  661. if not isinstance(nodes, Sequence):
  662. nodes = (nodes,)
  663. ret = list()
  664. queue = list(nodes)
  665. visited_queue = list()
  666. while queue:
  667. node = queue.pop()
  668. visited_queue.append(node)
  669. expr = node.expr
  670. if expr not in ret:
  671. ret.append(expr)
  672. for i in expr.inputs:
  673. if i not in queue and i not in visited_queue:
  674. queue.append(i)
  675. return ret
  676. def reset_inputs(self, *args, **kwargs):
  677. forma_mnode = self.inputs[0]
  678. moudle = forma_mnode.owner
  679. assert moudle._is_top, "reset_inputs only supports top graph"
  680. inputs, tree_def = tree_flatten(((moudle, *args), kwargs))
  681. def create_node(val: Tensor):
  682. name = self._namespace.create_unique_name("args")
  683. node = Input(
  684. type=TensorNode, name=name, qualname="%s.[%s]" % (self._qualname, name)
  685. ).outputs[0]
  686. self._namespace.associate_name_with_obj(node.name, node)
  687. node.shape = val.shape
  688. node.dtype = val.dtype
  689. return node
  690. formal_node_inputs = [
  691. forma_mnode,
  692. ]
  693. org_argdef = list(moudle.argdef_graph_map.keys())[0]
  694. for v in inputs[1:]:
  695. assert isinstance(v, RawTensor)
  696. formal_node_inputs.append(create_node(v))
  697. self._inputs[:] = formal_node_inputs
  698. moudle.argdef_graph_map[tree_def] = moudle.argdef_graph_map.pop(org_argdef)
  699. moudle.argdef_outdef_map[tree_def] = moudle.argdef_outdef_map.pop(org_argdef)
  700. return formal_node_inputs[1:]
  701. def add_input_node(
  702. self, shape: Tuple[int], dtype: str = "float32", name: str = "args"
  703. ):
  704. r"""Add an input node to the graph.
  705. The new Node will be the last of the positional arguments.
  706. Args:
  707. shape: the shape of the new input Node.
  708. dtype: the dtype of the new input Node.
  709. Default: float32
  710. name: the name of the new input Node. When the name is used in the graph,
  711. a suffix will be added to it.
  712. """
  713. forma_mnode = self.inputs[0]
  714. moudle = forma_mnode.owner
  715. assert moudle._is_top, "add_input_node only supports top graph"
  716. def create_node(name=None):
  717. name = self._namespace.create_unique_name(name)
  718. node = Input(
  719. type=TensorNode, name=name, qualname="%s.[%s]" % (self._qualname, name)
  720. ).outputs[0]
  721. self._namespace.associate_name_with_obj(node.name, node)
  722. node.shape = shape
  723. node.dtype = dtype
  724. return node
  725. org_argdef = list(moudle.argdef_graph_map.keys())[0]
  726. args, kwargs = org_argdef.unflatten(self._inputs)
  727. formal_inp_node = create_node(name)
  728. inputs, tree_def = tree_flatten(
  729. ((*args, formal_inp_node), kwargs),
  730. is_const_leaf=lambda x: not isinstance(x, (TensorNode, ModuleNode)),
  731. )
  732. self._inputs[:] = inputs[:]
  733. moudle.argdef_graph_map[tree_def] = moudle.argdef_graph_map.pop(org_argdef)
  734. moudle.argdef_outdef_map[tree_def] = moudle.argdef_outdef_map.pop(org_argdef)
  735. return formal_inp_node
  736. def reset_outputs(self, outputs):
  737. r"""Reset the output Nodes of the graph.
  738. .. note::
  739. This method only supports resetting the output of graphs
  740. that do not have a parent graph.
  741. Args:
  742. outputs: an object which inner element is Node. Support tuple, list
  743. dict, etc.
  744. For example, the following code
  745. .. code-block::
  746. import megengine.functional as F
  747. import megengine.module as M
  748. import megengine.traced_module as tm
  749. class MyModule(M.Module):
  750. def forward(self, x):
  751. x = x + 1
  752. return x
  753. net = MyModule()
  754. inp = F.zeros(shape = (1, ))
  755. traced_module = tm.trace_module(net, inp)
  756. graph = traced_module.graph
  757. inp_node = graph.inputs[1]
  758. out_node = graph.outputs[0]
  759. graph.reset_outputs((out_node, {"input": inp_node}))
  760. out = traced_module(inp)
  761. Will produce the following ``InternalGraph`` and ``out``::
  762. print(graph)
  763. print(out)
  764. .. code-block:: text
  765. MyModule.Graph (self, x) {
  766. %2: add_out = x.__add__(1, )
  767. return add_out, x
  768. }
  769. (Tensor([1.], device=xpux:0), {'input': Tensor([0.], device=xpux:0)})
  770. """
  771. outputs, out_def = tree_flatten(
  772. outputs, is_leaf=lambda x: isinstance(x, TensorNode),
  773. )
  774. forma_mnode = self.inputs[0]
  775. moudle = forma_mnode.owner
  776. assert moudle._is_top, "reset_outputs only supports top graph"
  777. tree_def = list(moudle.argdef_graph_map.keys())[0]
  778. self._outputs[:] = outputs
  779. moudle.argdef_outdef_map[tree_def] = out_def
  780. def add_output_node(self, node: TensorNode):
  781. r"""Add an output node to the Graph.
  782. The Graph output will become a ``tuple`` after calling ``add_output_node``.
  783. The first element of the ``tuple`` is the original output, and the second
  784. is the ``node``.
  785. For example, the following code
  786. .. code-block::
  787. import megengine.functional as F
  788. import megengine.module as M
  789. import megengine.traced_module as tm
  790. class MyModule(M.Module):
  791. def forward(self, x):
  792. x = x + 1
  793. return x
  794. net = MyModule()
  795. inp = F.zeros(shape = (1, ))
  796. traced_module = tm.trace_module(net, inp)
  797. graph = traced_module.graph
  798. inp_node = graph.inputs[1]
  799. out_node = graph.outputs[0]
  800. graph.add_output_node(inp_node)
  801. graph.add_output_node(out_node)
  802. out = traced_module(inp)
  803. Will produce the following ``InternalGraph`` and ``out``::
  804. print(graph)
  805. print(out)
  806. .. code-block:: text
  807. MyModule.Graph (self, x) {
  808. %2: add_out = x.__add__(1, )
  809. return add_out, x, add_out
  810. }
  811. ((Tensor([1.], device=xpux:0), Tensor([0.], device=xpux:0)), Tensor([1.], device=xpux:0))
  812. """
  813. forma_mnode = self.inputs[0]
  814. moudle = forma_mnode.owner
  815. assert moudle._is_top, "add_output_node only supports top graph"
  816. tree_def = list(moudle.argdef_graph_map.keys())[0]
  817. org_out_def = moudle.argdef_outdef_map[tree_def]
  818. org_outs = org_out_def.unflatten(self._outputs)
  819. outputs, out_def = tree_flatten(
  820. (org_outs, node), is_leaf=lambda x: isinstance(x, TensorNode),
  821. )
  822. self._outputs[:] = outputs
  823. moudle.argdef_outdef_map[tree_def] = out_def
  824. def insert_exprs(self, expr: Optional[Expr] = None):
  825. r"""Initialize the trace mode and insertion position.
  826. When used within a 'with' statement, this will temporary set the trace mode and
  827. then restore normal mode when the with statement exits::
  828. with graph.insert_exprs(e): # set the trace mode
  829. ... # trace function or module
  830. ... # inert exprs into graph and resotre normal mode
  831. Args:
  832. expr: the ``expr`` after which to insert. If None, the insertion position will be
  833. automatically set based on the input node.
  834. Returns:
  835. A resource manager that will initialize trace mode on ``__enter__`` and
  836. restore normal mode on ``__exit__``.
  837. """
  838. if expr is not None:
  839. assert expr.top_graph == self, "Expr to insert after is not in graph."
  840. return _InsertExprs(self, expr)
  841. def replace_node(self, repl_dict: Dict[Node, Node]):
  842. r"""Replace the Nodes in the graph.
  843. Args:
  844. repl_dict: the map {old_Node: new_Node} that specifies how to replace the Nodes.
  845. """
  846. while repl_dict:
  847. node, repl_node = repl_dict.popitem()
  848. assert type(node) == type(
  849. repl_node
  850. ), "The type of {}({}) and {}({}) are not the same".format(
  851. node, type(node).__name__, repl_node, type(repl_node).__name__
  852. )
  853. # check graph inputs and outputs
  854. for i, n in enumerate(self.outputs):
  855. if n is node:
  856. self.outputs[i] = repl_node
  857. # update users of node and repl_node
  858. # update inputs of expr in node.users
  859. graph = repl_node.top_graph
  860. assert graph is not None
  861. assert graph is self
  862. index = -1
  863. if not isinstance(repl_node.expr, Input):
  864. index = graph._exprs.index(repl_node.expr)
  865. dep_exprs = self.get_dep_exprs(repl_node)
  866. i = 0
  867. while i < len(node.users):
  868. n = node.users[i]
  869. if n in graph._exprs and index >= graph._exprs.index(n):
  870. i += 1
  871. continue
  872. if n in dep_exprs:
  873. logger.info("Find a loop: ignore this replacement once")
  874. logger.info("node: %s" % node.__repr__())
  875. logger.info("expr: %s" % n.__repr__())
  876. i += 1
  877. continue
  878. repl_node.users.append(n)
  879. node.users.pop(i)
  880. idx = n.inputs.index(node)
  881. n.inputs[idx] = repl_node
  882. def _merge_getattr_expr(self):
  883. getattr_nodes_map = dict() # Dcit[(Node, str), Node]
  884. node_to_attrname = dict() # Dict[Node, (Node, Str)]
  885. for expr in filter(lambda x: isinstance(x, GetAttr), self._exprs):
  886. base_node, attr_name = expr.inputs[0], expr.name
  887. if expr.inputs[0] in node_to_attrname:
  888. base_node, base_name = node_to_attrname[expr.inputs[0]]
  889. attr_name = "{}.{}".format(base_name, expr.name)
  890. if get_suffix_name(self.qualname, expr.outputs[0].qualname) != attr_name:
  891. expected_qualname = base_node.qualname + "." + attr_name
  892. logger.warning(
  893. "{}.qualname expects {}, got {} actually. You can re-trace this "
  894. "TracedModel to make the name correct.".format(
  895. expr.outputs[0], expected_qualname, expr.outputs[0].qualname
  896. )
  897. )
  898. expr.outputs[0]._qualname = expected_qualname
  899. key = (base_node, attr_name)
  900. node_to_attrname[expr.outputs[0]] = key
  901. if key in getattr_nodes_map:
  902. existed_node = getattr_nodes_map[key]
  903. repl_node = expr.outputs[0]
  904. for expr in repl_node.users:
  905. existed_node.users.append(expr)
  906. idx = expr.inputs.index(repl_node)
  907. expr.inputs[idx] = existed_node
  908. repl_node.users = []
  909. else:
  910. if attr_name != expr.name:
  911. expr.name = attr_name
  912. expr.inputs[0].users.remove(expr)
  913. self.inputs[0].users.append(expr)
  914. expr.inputs[0] = self.inputs[0]
  915. getattr_nodes_map[key] = expr.outputs[0]
  916. def compile(self):
  917. r"""Delete unused expr."""
  918. self._merge_getattr_expr()
  919. dep_exprs = self.get_dep_exprs(self.outputs)
  920. i = 0
  921. while i < len(self._exprs):
  922. expr = self._exprs[i]
  923. if expr in dep_exprs or expr._disable_remove:
  924. i += 1
  925. continue
  926. for n in expr.inputs:
  927. n.users.remove(expr)
  928. self._exprs.remove(expr)
  929. for n in expr.outputs:
  930. self._namespace.unassociate_name_with_obj(n)
  931. def _reset_ids(self):
  932. for total_expr_id, expr in enumerate(self.exprs()):
  933. expr._id = total_expr_id
  934. for total_node_id, node in enumerate(self.nodes()):
  935. node._id = total_node_id
  936. self._total_ids = (total_node_id + 1, total_expr_id + 1)
  937. def _re_associate_name(self):
  938. self._namespace.used_names.clear()
  939. for node in self.nodes(False):
  940. node._name = self._namespace.create_unique_name(node.name, node)
  941. def interpret(self, *inputs):
  942. node2value = {}
  943. end_nodes_set = set(self._end_point)
  944. endnode2value = {}
  945. def get_all_endnode_val(n, v):
  946. if n in end_nodes_set:
  947. endnode2value[n] = v
  948. end_nodes_set.remove(n)
  949. return not end_nodes_set
  950. return False
  951. ref_count = lambda n: len(n.users) + (1 if n in self._outputs else 0)
  952. for n, v in zip(self._inputs, inputs):
  953. if ref_count(n) > 0:
  954. node2value[n] = [v, ref_count(n)]
  955. if n in self._watch_point:
  956. self._rst[n].append(v)
  957. if n in self._end_point and get_all_endnode_val(n, v):
  958. return list(endnode2value[i] for i in self._end_point)
  959. for expr in self._exprs:
  960. values = expr.interpret(*list(node2value[i][0] for i in expr.inputs))
  961. for n in expr.inputs:
  962. node2value[n][1] -= 1
  963. if node2value[n][1] == 0:
  964. node2value.pop(n)
  965. if values is not None:
  966. assert len(values) == len(expr.outputs)
  967. for n, v in zip(expr.outputs, values):
  968. if ref_count(n) > 0:
  969. node2value[n] = [v, ref_count(n)]
  970. if n in self._watch_point:
  971. self._rst[n] = v
  972. if self._end_point and get_all_endnode_val(n, v):
  973. return list(endnode2value[i] for i in self._end_point)
  974. return list(node2value[i][0] for i in self._outputs)
  975. def eval(self, *inputs: Tuple[Tensor]):
  976. r"""Call this method to execute the graph.
  977. Args:
  978. inputs: the tensors corresponding to the ``graph.inputs[1:]``.
  979. """
  980. assert len(inputs) == len(self._inputs) - 1
  981. inp = [self._inputs[0].owner] + list(inputs)
  982. return self.interpret(*inp)
  983. def __repr__(self):
  984. return self.__format__()
  985. def __format__(self, format_spec: str = "") -> str:
  986. saved_format_spec = Node._set_format_spec(format_spec)
  987. name = ""
  988. if self._name:
  989. name = "%s.Graph" % self._name
  990. res = "{} ({}) {{\n\t{}\n\treturn {}\n}}".format(
  991. name,
  992. ", ".join(str(i) for i in self._inputs),
  993. "\n\t".join("{}".format(str(i)) for i in self._exprs),
  994. ", ".join(str(i) for i in self._outputs),
  995. )
  996. Node._set_format_spec(saved_format_spec)
  997. return res
  998. def __getstate__(self):
  999. state = {
  1000. "_exprs": self._exprs,
  1001. "_inputs": self._inputs,
  1002. "_outputs": self._outputs,
  1003. "_watch_point": [],
  1004. "_end_point": [],
  1005. "_namespace": self._namespace,
  1006. "_rst": collections.defaultdict(list),
  1007. "_name": self._name,
  1008. "_qualname": self._qualname,
  1009. }
  1010. if self._total_ids:
  1011. state["_total_ids"] = self._total_ids
  1012. _check_obj_attr(state)
  1013. return state
  1014. def __setstate__(self, state):
  1015. old_version = False
  1016. if "_module_name" in state:
  1017. old_version = True
  1018. state["_qualname"] = state.pop("_module_name")
  1019. prefix_name = state.pop("_prefix_name")
  1020. if prefix_name:
  1021. state["_name"] = "{}_{}".format(prefix_name, state["_name"])
  1022. self.__dict__.update(state)
  1023. if old_version:
  1024. self.inputs[0]._qualname = self._qualname
  1025. for e in self.exprs(False):
  1026. if isinstance(e, GetAttr):
  1027. e.outputs[0]._qualname = "{}.{}".format(
  1028. e.inputs[0]._qualname, e.name
  1029. )
  1030. for n in self.nodes(False):
  1031. if isinstance(n.expr, CallMethod) and isinstance(
  1032. n.expr.inputs[0], ModuleNode
  1033. ):
  1034. n._qualname = n.expr.inputs[0]._qualname + ".[out]"
  1035. continue
  1036. if (
  1037. not isinstance(n.expr, GetAttr)
  1038. and isinstance(n, TensorNode)
  1039. and n._qualname
  1040. ):
  1041. n._qualname = "{}.{}".format(self._qualname, n._qualname)
  1042. self._namespace = NameSpace(self._name, self._qualname)
  1043. self._re_associate_name()
  1044. def __copy__(self):
  1045. cls = self.__class__
  1046. result = cls.__new__(cls)
  1047. result.__dict__.update(self.__dict__)
  1048. return result
  1049. def __deepcopy__(self, memo):
  1050. if id(self) in memo:
  1051. return memo[id(self)]
  1052. cls = self.__class__
  1053. result = cls.__new__(cls)
  1054. state = {}
  1055. memo[id(self)] = result
  1056. for k, v in self.__dict__.items():
  1057. if not isinstance(v, weakref.ReferenceType):
  1058. state[k] = copy.deepcopy(v, memo)
  1059. result.__dict__.update(state)
  1060. return result
  1061. def _get_meth_name(obj, func):
  1062. tp = obj if isinstance(obj, type) else type(obj)
  1063. for cls in tp.mro():
  1064. for k, v in cls.__dict__.items():
  1065. if v == func:
  1066. return k
  1067. return None
  1068. def _wrapped_function(orig_func):
  1069. @functools.wraps(orig_func)
  1070. def wrapped_fn(*args, **kwargs):
  1071. method_func = kwargs.pop("method_func", wrapped_fn)
  1072. if is_tracing_module():
  1073. unset_module_tracing()
  1074. inputs, tree_def = tree_flatten((args, kwargs))
  1075. for i in inputs:
  1076. if not NodeMixin.get(i, None):
  1077. if isinstance(i, (RawTensor, NodeMixin)):
  1078. NodeMixin.wrap_safe(i, Constant.make(i))
  1079. args, kwargs = _convert_kwargs_to_args(orig_func, args, kwargs)
  1080. meth_name = _get_meth_name(args[0], method_func)
  1081. arg_type = args[0] if isinstance(args[0], type) else type(args[0])
  1082. if meth_name and arg_type and issubclass(arg_type, RawTensor):
  1083. inputs, tree_def = tree_flatten((args, kwargs))
  1084. self = inputs[0]
  1085. if meth_name == "__new__":
  1086. if all([not isinstance(i, RawTensor) for i in inputs]):
  1087. # only trace Tensor.__new__() when there are tensors in args
  1088. set_module_tracing()
  1089. return orig_func(*args, **kwargs)
  1090. if isinstance(args[1], RawTensor):
  1091. node = NodeMixin.get(inputs[1])
  1092. is_scalar = isscalar(inputs[1])
  1093. inputs[1] = apply(
  1094. Copy(comp_node=inputs[1].device), Tensor(inputs[1])
  1095. )[0]
  1096. if is_scalar:
  1097. setscalar(inputs[1])
  1098. # copy inputs[1] to avoid tensor and Tensor(tensor) share same m_tensor,
  1099. # which will cause they have same _NodeMixin__node in tracing.
  1100. NodeMixin.wrap_safe(inputs[1], node)
  1101. args, kwargs = tree_def.unflatten(inputs)
  1102. call_node = CallMethod.make(self, meth_name)
  1103. else:
  1104. call_node = CallMethod.make(NodeMixin.get(self), meth_name)
  1105. call_node.add_inputs(inputs[1:])
  1106. else:
  1107. inputs, tree_def = tree_flatten((args, kwargs))
  1108. call_node = CallFunction.make(orig_func)
  1109. call_node.add_inputs(inputs)
  1110. call_node.arg_def = tree_def
  1111. rst = orig_func(*args, **kwargs)
  1112. if meth_name == "__setitem__":
  1113. rst = self
  1114. if rst is not None:
  1115. outputs, out_def = tree_flatten(rst, is_leaf=_is_leaf)
  1116. call_node.out_def = out_def
  1117. else:
  1118. outputs = None
  1119. call_node.add_outputs(outputs)
  1120. if _get_expr_checker():
  1121. with _exclude_from_trace():
  1122. active_module_tracer().checker.check_expr_interpret(
  1123. call_node, outputs
  1124. )
  1125. set_module_tracing()
  1126. return rst
  1127. return orig_func(*args, **kwargs)
  1128. return wrapped_fn
  1129. class TracedModuleBuilder(NodeMixin):
  1130. _mod = None # type: Module
  1131. _body = None # type: InternalGraph
  1132. _is_builtin = None # type: bool
  1133. _argdef_graph_map = None # type: Dict[Treedef, "InternalGraph"]
  1134. _argdef_outdef_map = None # type: Dict[Treedef, Treedef]
  1135. nodes = None
  1136. __builder_attributes__ = [
  1137. "_mod",
  1138. "_body",
  1139. "_NodeMixin__node",
  1140. "_is_builtin",
  1141. "build",
  1142. "_record_wrapped_nodes",
  1143. "_argdef_graph_map",
  1144. "_argdef_outdef_map",
  1145. "_check_qat_module",
  1146. "nodes",
  1147. "__class__",
  1148. "__dict__",
  1149. "_is_top",
  1150. ]
  1151. def __init__(self, mod, is_top_module=False):
  1152. super(TracedModuleBuilder, self).__init__()
  1153. assert isinstance(mod, Module)
  1154. self._mod = mod
  1155. self._body = None
  1156. self._is_top = is_top_module
  1157. self._is_builtin = (
  1158. True
  1159. if isinstance(mod, (Observer, _FakeQuantize))
  1160. else module_tracer.is_builtin(mod)
  1161. )
  1162. if isinstance(self._mod, QATModule):
  1163. unset_module_tracing()
  1164. self._check_qat_module(self._mod)
  1165. set_module_tracing()
  1166. self._argdef_graph_map = {}
  1167. self._argdef_outdef_map = {}
  1168. self.nodes = set()
  1169. # The builder will be passed to self._mod.forward as 'self' argument. If the 'forward' uses super().xxx to call method of its base classes, the trace procedure will throw exceprion, because the builder doesn't inherit from self._mod.__bases__.
  1170. # modify self.__class__ and let the builder inherit from TracedModuleBuilder and mod.__class__.
  1171. self.__class__ = type(
  1172. "TracedModuleBuilder",
  1173. (TracedModuleBuilder, mod.__class__),
  1174. dict(TracedModuleBuilder.__dict__),
  1175. )
  1176. def _check_qat_module(self, qat_module):
  1177. def isbuiltin(m):
  1178. return m is None or module_tracer.is_builtin(m)
  1179. if qat_module.with_act:
  1180. act_observer = qat_module.act_observer
  1181. act_fakequant = qat_module.act_fake_quant
  1182. if not isbuiltin(act_observer) or not isbuiltin(act_fakequant):
  1183. qparams = (
  1184. act_observer.get_qparams()
  1185. if hasattr(act_observer, "get_qparams")
  1186. else act_fakequant.get_qparams()
  1187. )
  1188. dtype = (
  1189. act_observer.dtype
  1190. if hasattr(act_observer, "dtype")
  1191. else act_fakequant.dtype
  1192. )
  1193. qat_module.act_observer = None
  1194. qat_module.act_fake_quant = TM_FakeQuant(dtype)
  1195. qat_module.act_fake_quant.set_qparams(qparams)
  1196. if qat_module.with_weight:
  1197. weight_observer = qat_module.weight_observer
  1198. weight_fakequant = qat_module.weight_fake_quant
  1199. if not isbuiltin(weight_observer) or not isbuiltin(weight_fakequant):
  1200. qparams = (
  1201. weight_observer.get_qparams()
  1202. if hasattr(weight_observer, "get_qparams")
  1203. else weight_fakequant.get_qparams()
  1204. )
  1205. dtype = (
  1206. weight_observer.dtype
  1207. if hasattr(weight_observer, "dtype")
  1208. else weight_fakequant.dtype
  1209. )
  1210. qat_module.weight_observer = None
  1211. qat_module.weight_fake_quant = TM_FakeQuant(dtype)
  1212. qat_module.weight_fake_quant.set_qparams(qparams)
  1213. def build(self):
  1214. if self._is_builtin:
  1215. assert module_tracer.is_builtin(self._mod)
  1216. mod_type = type(self._mod)
  1217. for node in self.nodes:
  1218. node.module_type = mod_type
  1219. return self._mod
  1220. elif isinstance(self._mod, TracedModule) and _graph_surgery_mode():
  1221. return self._mod
  1222. else:
  1223. is_qat = isinstance(self._mod, QATModule) or (
  1224. isinstance(self._mod, TracedModule) and self._mod.is_qat
  1225. )
  1226. traced_module = TracedModule(
  1227. self._is_top, self._argdef_graph_map, self._argdef_outdef_map, is_qat
  1228. )
  1229. for _, g in self._argdef_graph_map.items():
  1230. g.compile()
  1231. if self._is_top:
  1232. g._total_ids = (Node._get_next_id(), Expr._get_next_id())
  1233. for k, v in self.__dict__.items():
  1234. if k not in TracedModuleBuilder.__builder_attributes__:
  1235. if isinstance(v, TracedModuleBuilder):
  1236. v = v.build()
  1237. setattr(traced_module, k, v)
  1238. elif isinstance(v, RawTensor):
  1239. setattr(traced_module, k, v)
  1240. if isinstance(self._mod, QATModule):
  1241. unset_module_tracing()
  1242. traced_module.with_act = self._mod.with_act
  1243. traced_module.with_weight = self._mod.with_weight
  1244. if not hasattr(traced_module, "act_fake_quant"):
  1245. traced_module.act_fake_quant = None
  1246. if not hasattr(traced_module, "act_observer"):
  1247. traced_module.act_observer = None
  1248. if not hasattr(traced_module, "weight_fake_quant"):
  1249. traced_module.weight_fake_quant = None
  1250. if not hasattr(traced_module, "weight_observer"):
  1251. traced_module.weight_observer = None
  1252. set_module_tracing()
  1253. if self._is_top:
  1254. traced_module._update_ref()
  1255. return traced_module
  1256. def _record_wrapped_nodes(self, node):
  1257. self.nodes.add(node)
  1258. def __call__(self, *args, **kwargs):
  1259. assert isinstance(self._mod, Module)
  1260. is_graph_surgery_mode = _graph_surgery_mode()
  1261. if isinstance(self._mod, TracedModule) and is_graph_surgery_mode:
  1262. _set_graph_surgery_mode(False)
  1263. # prepare args and kwargs for inner graph
  1264. if "method_func" in kwargs:
  1265. kwargs.pop("method_func")
  1266. args, kwargs = _convert_kwargs_to_args(self._mod.forward, args, kwargs, True)
  1267. def mark_constant(x):
  1268. node = NodeMixin.get(x, None)
  1269. if node is None: # capture as constant
  1270. NodeMixin.wrap(x, lambda: Constant.make(x))
  1271. inputs, tree_def = tree_flatten(((self, *args), kwargs))
  1272. for i in inputs:
  1273. mark_constant(i)
  1274. callnode = CallMethod.make(NodeMixin.get(self))
  1275. callnode.add_inputs(inputs[1:])
  1276. callnode.arg_def = tree_def
  1277. if self._is_builtin or tree_def in self._argdef_graph_map:
  1278. unset_module_tracing()
  1279. rst = self._mod(*args, **kwargs)
  1280. outputs, out_def = tree_flatten(rst, is_leaf=_is_leaf)
  1281. if _get_expr_checker():
  1282. with _exclude_from_trace():
  1283. tmp = self.build()
  1284. active_module_tracer().checker.check_builtin_module(
  1285. tmp, callnode, outputs
  1286. )
  1287. set_module_tracing()
  1288. if self._is_builtin:
  1289. self._body = None
  1290. elif tree_def in self._argdef_graph_map:
  1291. self._body = self._argdef_graph_map[tree_def]
  1292. else:
  1293. orig_self = NodeMixin.get(self)
  1294. parent_graph = active_module_tracer().current_scope()
  1295. module_qualname = orig_self._qualname
  1296. self._body = InternalGraph(
  1297. name=parent_graph._namespace.create_unique_name(module_qualname),
  1298. qualname=module_qualname,
  1299. )
  1300. parent_graph._namespace.associate_name_with_obj(self._body.name, self._body)
  1301. active_module_tracer().push_scope(self._body)
  1302. # rebind self to new input node
  1303. NodeMixin.wrap_safe(
  1304. self,
  1305. Input.make(
  1306. name="self",
  1307. qualname=module_qualname,
  1308. type=NodeMixin.get_wrapped_type(self),
  1309. ),
  1310. )
  1311. origin_inp_node = [NodeMixin.get(i, None) for i in inputs[1:]]
  1312. # prepare args and kwargs for inner graph
  1313. index_args, index_kwargs = tree_def.unflatten(
  1314. [
  1315. ArgsIndex(0),
  1316. *list(ArgsIndex(i + 1) for i in range(len(origin_inp_node))),
  1317. ]
  1318. )
  1319. key2idx = getcallargs(type(self._mod).forward, *index_args, **index_kwargs)
  1320. idx2key = {}
  1321. for k, v in key2idx.items():
  1322. if isinstance(v, ArgsIndex):
  1323. idx2key[v.index] = k
  1324. else:
  1325. flatten_argidx, _ = tree_flatten(v)
  1326. for _i, v in enumerate(flatten_argidx):
  1327. if isinstance(v, ArgsIndex):
  1328. idx2key[v.index] = k + "_%d" % _i
  1329. def wrap(x, name):
  1330. if isinstance(x, (RawTensor, NodeMixin)):
  1331. NodeMixin.wrap(
  1332. x,
  1333. lambda: Input.make(
  1334. type=NodeMixin.get_wrapped_type(x),
  1335. name=name,
  1336. qualname="%s.[%s]" % (module_qualname, name),
  1337. ),
  1338. )
  1339. return x
  1340. args = [self]
  1341. orig_traced_inputs = (
  1342. None
  1343. if not isinstance(self._mod, TracedModule)
  1344. else self._mod.argdef_graph_map[tree_def].inputs
  1345. )
  1346. ind = 1
  1347. for v in inputs[1:]:
  1348. if isinstance(v, (RawTensor, NodeMixin)):
  1349. args_name = (
  1350. orig_traced_inputs[ind]._name
  1351. if orig_traced_inputs
  1352. else idx2key[ind]
  1353. )
  1354. ind += 1
  1355. args.append(wrap(v, args_name))
  1356. else:
  1357. args.append(v)
  1358. args, kwargs = tree_def.unflatten(args)
  1359. active_module_tracer().patcher.auto_patch(
  1360. getattr(getattr(self._mod, "forward", self._mod), "__globals__", {})
  1361. )
  1362. rst = type(self._mod).forward(*args, **kwargs)
  1363. if _graph_surgery_mode():
  1364. rst = _node_to_tensor(rst)[0][0]
  1365. outputs, out_def = tree_flatten(rst, is_leaf=_is_leaf)
  1366. for i in (
  1367. outputs if isinstance(outputs, collections.abc.Sequence) else (outputs,)
  1368. ):
  1369. mark_constant(i)
  1370. active_module_tracer().current_scope()._add_output(NodeMixin.get(i))
  1371. NodeMixin.wrap_safe(self, orig_self)
  1372. for arg, node in zip(inputs[1:], origin_inp_node):
  1373. if node:
  1374. NodeMixin.wrap_safe(arg, node)
  1375. active_module_tracer().pop_scope()
  1376. # rebind output to outer graph
  1377. callnode.out_def = out_def
  1378. callnode.add_outputs(outputs)
  1379. self._argdef_graph_map[callnode.arg_def] = self._body
  1380. self._argdef_outdef_map[callnode.arg_def] = out_def
  1381. _set_graph_surgery_mode(is_graph_surgery_mode)
  1382. return rst
  1383. def __setattr__(self, name, value):
  1384. object.__setattr__(self, name, value)
  1385. def __repr__(self):
  1386. return repr(self._mod)
  1387. def __getattr__(self, name):
  1388. if name not in self._mod.__dict__:
  1389. attr = getattr(type(self._mod), name).__get__(self, type(self))
  1390. else:
  1391. attr = getattr(self._mod, name)
  1392. if (
  1393. isinstance(attr, FunctionType)
  1394. and id(attr) in active_module_tracer().patcher.patched_fn_ids
  1395. ):
  1396. return active_module_tracer().patcher.wrap_fn(attr)
  1397. if isinstance(attr, (List, Dict)):
  1398. flag = _set_graph_surgery_mode(False)
  1399. unset_module_tracing()
  1400. has_module, m_container = replace_container_with_module_container(attr)
  1401. if m_container:
  1402. attr = m_container
  1403. if has_module and not m_container:
  1404. raise ValueError(
  1405. "Can not trace the module that uses the same container to store"
  1406. " Module and Non-Module objects."
  1407. )
  1408. set_module_tracing()
  1409. _set_graph_surgery_mode(flag)
  1410. if isinstance(attr, Module):
  1411. attr = TracedModuleBuilder(attr)
  1412. if isinstance(attr, (Module, RawTensor)):
  1413. setattr(self, name, attr)
  1414. NodeMixin.wrap(
  1415. attr,
  1416. lambda: GetAttr.make(
  1417. NodeMixin.get(self),
  1418. type=NodeMixin.get_wrapped_type(attr),
  1419. attr_name=name,
  1420. name="",
  1421. ),
  1422. )
  1423. return attr
  1424. def __getattribute__(self, name):
  1425. if name in TracedModuleBuilder.__builder_attributes__:
  1426. return object.__getattribute__(self, name)
  1427. else:
  1428. wrapped = object.__getattribute__(self, name)
  1429. class_members = dict(inspect.getmembers(self.__class__))
  1430. if name in self._mod.__dict__:
  1431. mod_attr = getattr(self._mod, name)
  1432. if name in class_members:
  1433. if (
  1434. not isinstance(wrapped, TracedModuleBuilder)
  1435. and wrapped is not mod_attr
  1436. ):
  1437. wrapped = self.__getattr__(name)
  1438. if isinstance(wrapped, TracedModuleBuilder):
  1439. if not isinstance(mod_attr, (List, Dict, QATModule)):
  1440. assert mod_attr is wrapped._mod
  1441. else:
  1442. assert (
  1443. mod_attr is wrapped
  1444. ), "TracedModule do not support modify attributes, please check your code."
  1445. if isinstance(wrapped, (NodeMixin, RawTensor)):
  1446. NodeMixin.wrap(
  1447. wrapped,
  1448. lambda: GetAttr.make(
  1449. NodeMixin.get(self),
  1450. type=NodeMixin.get_wrapped_type(wrapped),
  1451. attr_name=name,
  1452. name="",
  1453. ),
  1454. )
  1455. return wrapped
  1456. class _expr_iter:
  1457. def __init__(self, graph: InternalGraph, recursive: bool = True):
  1458. self.graph = graph
  1459. self.recursive = recursive
  1460. self._visited_graph = set()
  1461. def __iter__(self):
  1462. yield from self._gen_expr(self.graph)
  1463. def _gen_expr(self, graph: InternalGraph):
  1464. visit_inp = set()
  1465. for inp_node in graph.inputs:
  1466. if inp_node not in visit_inp:
  1467. yield inp_node.expr
  1468. visit_inp.add(inp_node)
  1469. for expr in graph._exprs:
  1470. yield expr
  1471. if (
  1472. self.recursive
  1473. and hasattr(expr, "graph")
  1474. and expr.graph is not None
  1475. and id(expr.graph) not in self._visited_graph
  1476. ):
  1477. self._visited_graph.add(id(expr.graph))
  1478. yield from self._gen_expr(expr.graph)
  1479. class _node_iter:
  1480. def __init__(self, graph: InternalGraph, recursive: bool = True) -> None:
  1481. nodes = []
  1482. node_ids = set()
  1483. for expr in graph.exprs(recursive):
  1484. for n in expr.outputs:
  1485. assert id(n) not in node_ids
  1486. nodes.append(n)
  1487. node_ids.add(id(n))
  1488. self.nodes = nodes
  1489. def __iter__(self):
  1490. for node in self.nodes:
  1491. yield node
  1492. class BaseFilter:
  1493. r"""``BaseFilter`` exposes some methods for converting ``_node_iter/_expr_iter`` to ``list``, ``dict``, etc."""
  1494. def __init__(self, iter: Iterable):
  1495. self._iter = iter
  1496. def __iter__(self):
  1497. return iter(self._iter)
  1498. def as_list(self):
  1499. r"""Consume this iterator and return its content as a list.
  1500. Returns:
  1501. A list of ``Node`` or ``Expr``.
  1502. """
  1503. return list(self)
  1504. def as_dict(self):
  1505. r"""Construct an ordered dict to map from ``id`` to objects in this iterator.
  1506. Returns:
  1507. An :class:`OrderedDict`.
  1508. """
  1509. return collections.OrderedDict((i._id, i) for i in self)
  1510. def as_unique(self):
  1511. """Assert that this iterator yields only one ``Node`` or ``Expr`` and return it.
  1512. Rerurns:
  1513. A ``Node`` or ``Expr``.
  1514. """
  1515. rst = self.as_list()
  1516. assert len(rst) == 1, "{} elements found".format(len(rst))
  1517. (elem,) = self
  1518. return elem
  1519. def as_count(self):
  1520. r"""Consume this iterator and get the number of elements."""
  1521. return sum(1 for _ in self)
  1522. class ExprFilter(BaseFilter):
  1523. """Filter on Expr iterator.
  1524. This class is an iterator of :class:`.Expr` objects and multiple
  1525. filtering conditions and mappers can be chained.
  1526. """
  1527. def call_function(self, func):
  1528. r"""Filter by specific ``CallFunction.func``.
  1529. See :meth:`~.InternalGraph.get_function_by_type` for details.
  1530. """
  1531. return ExprFilterCallFunction(self, func)
  1532. def call_method(self, method):
  1533. r"""Filter by specific ``CallMethod.method``.
  1534. See :meth:`~.InternalGraph.get_function_by_type` for details.
  1535. """
  1536. return ExprFilterCallMethod(self, method)
  1537. def expr_id(self, expr_id: List[int]):
  1538. r"""Filter Exprs by their ``id``.
  1539. See :meth:`~.InternalGraph.get_function_by_type` for details.
  1540. """
  1541. return ExprFilterExprId(self, expr_id)
  1542. class NodeFilter(BaseFilter):
  1543. """Filter on Node iterator.
  1544. This class is an iterator of :class:`~.traced_module.Node` objects and multiple
  1545. filtering conditions and mappers can be chained.
  1546. """
  1547. def type(self, owner_type):
  1548. r"""Filter by specific Module type.
  1549. See :meth:`~.InternalGraph.get_module_by_type` for details.
  1550. """
  1551. return NodeFilterType(self, owner_type)
  1552. def node_id(self, node_id: List[int]):
  1553. r"""Filter Nodes by their ``id``.
  1554. See :meth:`~.InternalGraph.get_node_by_id` for details.
  1555. """
  1556. return NodeFilterNodeId(self, node_id)
  1557. def name(self, name: str, ignorecase: bool = True):
  1558. r"""Filter Nodes by their full name.
  1559. See :meth:`~.InternalGraph.get_node_by_name` for details.
  1560. """
  1561. return NodeFilterName(self, name, ignorecase)
  1562. class NodeFilterType(NodeFilter):
  1563. """See :meth:`~.InternalGraph.get_module_by_type`"""
  1564. def __init__(self, expr_iter, owner_type):
  1565. super().__init__(expr_iter)
  1566. self.owner_type = owner_type
  1567. def __iter__(self):
  1568. for node in self._iter:
  1569. if not isinstance(node, ModuleNode):
  1570. continue
  1571. if not hasattr(node, "owner"):
  1572. continue
  1573. if isinstance(node.owner, self.owner_type):
  1574. yield node
  1575. class NodeFilterNodeId(NodeFilter):
  1576. """See :meth:`~.InternalGraph.get_node_by_id`"""
  1577. def __init__(self, expr_iter, node_id: List[int]):
  1578. super().__init__(expr_iter)
  1579. if not isinstance(node_id, Sequence):
  1580. node_id = [node_id]
  1581. self.node_id = node_id
  1582. def __iter__(self):
  1583. for node in self._iter:
  1584. if node._id in self.node_id:
  1585. yield node
  1586. class NodeFilterName(NodeFilter):
  1587. """See :meth:`~.InternalGraph.get_node_by_name`"""
  1588. _re = None
  1589. def __init__(self, node_iter, pattern, ignorecase):
  1590. super().__init__(node_iter)
  1591. self.pattern = pattern
  1592. self._re = self.make_re(pattern, ignorecase)
  1593. @classmethod
  1594. def make_re(cls, pattern, ignorecase=True):
  1595. assert isinstance(pattern, str), "bad pattern: {!r}".format(pattern)
  1596. assert isinstance(ignorecase, bool)
  1597. flags = 0
  1598. if ignorecase:
  1599. flags |= re.IGNORECASE
  1600. return re.compile(fnmatch.translate(pattern), flags=flags)
  1601. def __iter__(self):
  1602. for i in self._iter:
  1603. graph = i.top_graph
  1604. name = "{}_{}".format(graph._name, i._name)
  1605. if self.pattern == name or self._re.match(name):
  1606. yield i
  1607. class ExprFilterCallFunction(ExprFilter):
  1608. """See :meth:`~.InternalGraph.get_function_by_type`"""
  1609. def __init__(self, expr_iter, func: Callable = None):
  1610. super().__init__(expr_iter)
  1611. self.func = func
  1612. def __iter__(self):
  1613. for expr in self._iter:
  1614. if not isinstance(expr, CallFunction):
  1615. continue
  1616. if self.func is None or expr.func == self.func:
  1617. yield expr
  1618. class ExprFilterCallMethod(ExprFilter):
  1619. """See :meth:`~.InternalGraph.get_method_by_type`"""
  1620. def __init__(self, expr_iter, method: str = None):
  1621. super().__init__(expr_iter)
  1622. self.method = method
  1623. def __iter__(self):
  1624. for expr in self._iter:
  1625. if not isinstance(expr, CallMethod):
  1626. continue
  1627. if self.method is None or expr.method == self.method:
  1628. yield expr
  1629. class ExprFilterExprId(ExprFilter):
  1630. """See :meth:`~.InternalGraph.get_expr_by_id`"""
  1631. def __init__(self, expr_iter, expr_id: List[int]):
  1632. super().__init__(expr_iter)
  1633. if not isinstance(expr_id, Sequence):
  1634. expr_id = [expr_id]
  1635. self.expr_id = expr_id
  1636. def __iter__(self):
  1637. for expr in self._iter:
  1638. if expr._id in self.expr_id:
  1639. yield expr
  1640. class TracedModule(Module):
  1641. r"""``TracedModule`` is the Module created by tracing normal module.
  1642. It owns an argdef to graph(InternalGraph) map. The forward method of ``TracedModule``
  1643. will get a graph from ``argdef_graph_map`` according to the argdef of input ``args/kwargs``
  1644. and interpret it.
  1645. .. note::
  1646. ``TracedModule`` can only be created by :func:`~.trace_module`. See :func:`~.trace_module`
  1647. for more details.
  1648. """
  1649. # m_node = None # type: ModuleNode
  1650. argdef_graph_map = None
  1651. argdef_outdef_map = None
  1652. def __init__(self, is_top, argdef_graph_map, argdef_outdef_map, is_qat=False):
  1653. super(TracedModule, self).__init__()
  1654. self.argdef_graph_map = argdef_graph_map
  1655. self.argdef_outdef_map = argdef_outdef_map
  1656. self._is_top = is_top
  1657. self.watch_points = []
  1658. self.watch_node_value = {}
  1659. self.end_points = []
  1660. self.is_qat = is_qat
  1661. self.argspec = None
  1662. def forward(self, *args, **kwargs):
  1663. if hasattr(self, "argspec") and self.argspec is not None:
  1664. args, kwargs = _convert_kwargs_to_args(self.argspec, args, kwargs, True)
  1665. inputs, treedef = tree_flatten(((self, *args), kwargs))
  1666. assert treedef in self.argdef_graph_map
  1667. inputs = filter(
  1668. lambda i: isinstance(i, (Module, TracedModuleBuilder, RawTensor)), inputs
  1669. ) # allow TracedModuleBuilder for retrace.
  1670. outputs = self.argdef_graph_map[treedef].interpret(*inputs)
  1671. if self.watch_points:
  1672. self.watch_node_value = {}
  1673. for n in self.watch_points:
  1674. self.watch_node_value[n] = n.top_graph._rst.pop(n)
  1675. if self.end_points:
  1676. return outputs
  1677. out_def = self.argdef_outdef_map[treedef]
  1678. outputs = out_def.unflatten(outputs)
  1679. return outputs
  1680. def set_watch_points(self, nodes):
  1681. r"""Initialize the :attr:`~.TracedModule.watch_points`.
  1682. You can call this function to get the ``Tensor/Module`` corresponding to a ``Node`` at runtime.
  1683. Args:
  1684. nodes: a list of ``Node``.
  1685. For example, the following code
  1686. .. code-block::
  1687. import megengine.module as M
  1688. import megengine as mge
  1689. import megengine.traced_module as tm
  1690. class MyModule(M.Module):
  1691. def forward(self, x):
  1692. x = x + 1 + 2
  1693. return x
  1694. net = MyModule()
  1695. inp = mge.Tensor([0])
  1696. traced_module = tm.trace_module(net, inp)
  1697. add_1_node = traced_module.graph.get_node_by_id(2).as_unique()
  1698. traced_module.set_watch_points(add_1_node)
  1699. out = traced_module(inp)
  1700. Will get the following ``watch_node_value``::
  1701. print(traced_module.watch_node_value)
  1702. .. code-block:: text
  1703. {add_out: Tensor([1.], device=xpux:0)}
  1704. """
  1705. if not isinstance(nodes, Sequence):
  1706. nodes = [nodes]
  1707. self.watch_points = nodes
  1708. if nodes:
  1709. nodes[0].top_graph._watch_point = []
  1710. for n in nodes:
  1711. n.top_graph._watch_point.append(n)
  1712. def clear_watch_points(self):
  1713. r"""Clear the :attr:`~.TracedModule.watch_points` and :attr:`~.TracedModule.watch_node_value`.
  1714. """
  1715. for n in self.watch_points:
  1716. n.top_graph._watch_point = []
  1717. self.watch_points = []
  1718. self.watch_node_value = {}
  1719. def set_end_points(self, nodes: Sequence[Node]):
  1720. r"""Initialize the :attr:`~.TracedModule.end_points`.
  1721. When all the ``nodes`` are generated, the Module will stop execution and return directly.
  1722. Args:
  1723. nodes: a list of ``Node``.
  1724. For example, the following code
  1725. .. code-block::
  1726. import megengine.module as M
  1727. import megengine as mge
  1728. import megengine.traced_module as tm
  1729. class MyModule(M.Module):
  1730. def forward(self, x):
  1731. x = x + 1 + 2
  1732. return x
  1733. net = MyModule()
  1734. inp = mge.Tensor([0])
  1735. traced_module = tm.trace_module(net, inp)
  1736. add_1_node = traced_module.graph.get_node_by_id(2).as_unique()
  1737. traced_module.set_end_points(add_1_node)
  1738. out = traced_module(inp)
  1739. Will get the following ``out``::
  1740. print(out)
  1741. .. code-block:: text
  1742. [Tensor([1.], device=xpux:0)]
  1743. """
  1744. if not isinstance(nodes, Sequence):
  1745. nodes = [nodes]
  1746. self.end_points = nodes
  1747. graphs = list(self.argdef_graph_map.values())
  1748. for n in nodes:
  1749. assert n.top_graph in graphs
  1750. n.top_graph._end_point.append(n)
  1751. def clear_end_points(self):
  1752. r"""Clear the :attr:`~.TracedModule.end_points`.
  1753. """
  1754. for n in self.end_points:
  1755. n.top_graph._end_point = []
  1756. self.end_points = []
  1757. @property
  1758. def graph(self) -> InternalGraph:
  1759. """Return the ``InternalGraph`` of this ``TracedModule``.
  1760. """
  1761. assert len(self.argdef_graph_map) == 1
  1762. return list(self.argdef_graph_map.values())[0]
  1763. def _update_ref(self, actual_node_map: Union[Dict] = None, top_graph=None):
  1764. for inp_def, graph in self.argdef_graph_map.items():
  1765. if top_graph is not None:
  1766. graph._top_graph = weakref.ref(top_graph)
  1767. for n in graph._inputs + graph._outputs:
  1768. n.expr._top_graph = weakref.ref(graph)
  1769. n._top_graph = weakref.ref(graph)
  1770. graph._inputs[0]._owner = weakref.ref(self)
  1771. for i, n in enumerate(graph._inputs):
  1772. n.actual_node = []
  1773. if actual_node_map is not None and inp_def in actual_node_map.keys():
  1774. n.actual_node = list(list(zip(*(actual_node_map[inp_def])))[i])
  1775. node2obj = {}
  1776. next_actual_node_map = collections.defaultdict(
  1777. lambda: collections.defaultdict(list)
  1778. )
  1779. node2obj[graph._inputs[0]] = self
  1780. for expr in graph._exprs:
  1781. for n in expr.inputs + expr.outputs:
  1782. n._top_graph = weakref.ref(graph)
  1783. expr._top_graph = weakref.ref(graph)
  1784. if isinstance(expr, GetAttr) and isinstance(
  1785. expr.outputs[0], ModuleNode
  1786. ):
  1787. obj = expr.interpret(node2obj[expr.inputs[0]])[0]
  1788. expr.outputs[0]._owner = weakref.ref(obj)
  1789. node2obj[expr.outputs[0]] = obj
  1790. if isinstance(expr, Constant) and isinstance(
  1791. expr.outputs[0], ModuleNode
  1792. ):
  1793. obj = expr.value
  1794. expr.outputs[0]._owner = weakref.ref(obj)
  1795. node2obj[expr.outputs[0]] = obj
  1796. if (
  1797. isinstance(expr, CallMethod)
  1798. and expr.method == "__call__"
  1799. and isinstance(expr.inputs[0], ModuleNode)
  1800. ):
  1801. obj = node2obj[expr.inputs[0]]
  1802. if expr.arg_def is not None:
  1803. next_actual_node_map[obj][expr.arg_def].append(expr.inputs)
  1804. for obj in node2obj.values():
  1805. if obj is self:
  1806. continue
  1807. mnode_map = None
  1808. if obj in next_actual_node_map.keys():
  1809. mnode_map = next_actual_node_map[obj]
  1810. if isinstance(obj, TracedModule):
  1811. obj._update_ref(mnode_map, graph)
  1812. def flatten(self):
  1813. r"""Get a new TracedModule, which eliminates ``GetAttr`` and has no hierarchy.
  1814. Retruns:
  1815. A new :class:`TracedModule`.
  1816. """
  1817. new_module = copy.deepcopy(self)
  1818. def _replace_inputs_and_outputs(expr: Expr, repl_dict: Dict[Node, Node]):
  1819. inputs, outputs = expr.inputs, expr.outputs
  1820. for i, node in enumerate(inputs):
  1821. if node in repl_dict:
  1822. inputs[i] = repl_dict[node]
  1823. for i, node in enumerate(outputs):
  1824. if node in repl_dict:
  1825. outputs[i] = repl_dict[node]
  1826. outputs[i].expr = expr
  1827. def _flatten_subgraph(
  1828. parent_graph: InternalGraph,
  1829. graph: InternalGraph,
  1830. call: CallMethod,
  1831. module: Module,
  1832. ):
  1833. repl_dict, node2obj, rename_blacklist = {}, {}, []
  1834. if call is not None:
  1835. graph = copy.deepcopy(graph)
  1836. node2obj[call.inputs[0]] = module
  1837. repl_dict = dict(zip(graph._inputs, call.inputs))
  1838. for ind, out in enumerate(graph.outputs):
  1839. if isinstance(out.expr, Input):
  1840. assert out in repl_dict
  1841. call_out = call.outputs[ind]
  1842. for expr in call.outputs[ind].users:
  1843. for index, inp in enumerate(expr.inputs):
  1844. if inp is call_out:
  1845. expr.inputs[index] = repl_dict[out]
  1846. repl_dict[out].users.append(expr)
  1847. if parent_graph is not None:
  1848. for index, parent_out in enumerate(parent_graph._outputs):
  1849. if parent_out is call_out:
  1850. parent_graph._outputs[index] = repl_dict[out]
  1851. continue
  1852. repl_dict[out] = call.outputs[ind]
  1853. if isinstance(out, TensorNode):
  1854. call.outputs[ind]._qualname = out._qualname
  1855. for node, repl_node in repl_dict.items():
  1856. assert node in graph._inputs or node in graph._outputs
  1857. repl_node.users.extend(node.users)
  1858. rename_blacklist = list(chain(call.inputs, call.outputs))
  1859. node2obj[graph._inputs[0]] = module
  1860. prefix_name = call.inputs[0]._name if call else ""
  1861. flattened_exprs = []
  1862. for expr in graph._exprs:
  1863. exprs = [expr]
  1864. if call is not None:
  1865. _replace_inputs_and_outputs(expr, repl_dict)
  1866. if isinstance(expr, GetAttr):
  1867. mnode = expr.inputs[0]
  1868. node2obj[expr.outputs[0]] = expr.interpret(node2obj[mnode])[0]
  1869. if isinstance(expr, CallMethod):
  1870. obj_node = expr.inputs[0]
  1871. if isinstance(obj_node, ModuleNode) and isinstance(
  1872. obj_node.expr, GetAttr
  1873. ):
  1874. obj = node2obj[obj_node]
  1875. expr_graph = (
  1876. obj.argdef_graph_map[expr.arg_def]
  1877. if hasattr(obj, "argdef_graph_map")
  1878. else None
  1879. )
  1880. if expr_graph is not None and not obj.is_qat:
  1881. exprs = _flatten_subgraph(graph, expr_graph, expr, obj)
  1882. if parent_graph is not None:
  1883. for node in expr.outputs:
  1884. name = node._name
  1885. if node not in rename_blacklist:
  1886. name = "{}_{}".format(prefix_name, name)
  1887. node._name = parent_graph._namespace.create_unique_name(
  1888. name, node
  1889. )
  1890. flattened_exprs.extend(exprs)
  1891. if call is not None:
  1892. for i in call.inputs:
  1893. i.users.remove(call)
  1894. return flattened_exprs
  1895. new_module.graph._exprs = _flatten_subgraph(
  1896. None, new_module.graph, None, new_module
  1897. )
  1898. new_module.graph._re_associate_name()
  1899. new_module.graph.compile()
  1900. new_module._update_ref()
  1901. new_module.graph._reset_ids()
  1902. return new_module
  1903. def __getstate__(self):
  1904. d = self.__dict__.copy()
  1905. for k in Module.__dict__:
  1906. d.pop(k, None)
  1907. _check_obj_attr(d)
  1908. for k in d:
  1909. if module_tracer.is_builtin(d[k]):
  1910. assert _check_builtin_module_attr(
  1911. d[k]
  1912. ), "Module {} can not be serialized. ".format(type(d[k]))
  1913. d[k] = _ModuleState.get_module_state(d[k])
  1914. dump_info = {
  1915. "version": __version__,
  1916. "register_type": USER_REGISTERED_LEAF_TYPE,
  1917. "register_container_type": USER_REGISTERED_CONTAINER_TYPE,
  1918. "register_mdule": USER_REGISTERED_MODULE,
  1919. "register_function": USER_REGISTERED_FUNCTION,
  1920. }
  1921. d["dump_info"] = dump_info
  1922. return d
  1923. def __setstate__(self, state):
  1924. for k, v in state.items():
  1925. if isinstance(v, _ModuleState):
  1926. state[k] = v.to_module()
  1927. self.__dict__.update(state)
  1928. self._update_ref()
  1929. for _, graph in self.argdef_graph_map.items():
  1930. for expr in graph._exprs:
  1931. if isinstance(expr, CallFunction):
  1932. load_functional(expr)
  1933. if isinstance(expr, CallMethod):
  1934. if expr.method == "__call__":
  1935. load_call_module_expr(expr)
  1936. else:
  1937. load_call_tensor_method_expr(expr)
  1938. if isinstance(expr, Apply):
  1939. load_apply_expr(expr)
  1940. for _, graph in self.argdef_graph_map.items():
  1941. ind = 0
  1942. while ind < len(graph._exprs):
  1943. cur_expr = graph._exprs[ind]
  1944. has_new_expr = False
  1945. for i in cur_expr.inputs:
  1946. if i.expr not in graph._exprs and not isinstance(i.expr, Input):
  1947. graph._exprs.insert(ind, i.expr)
  1948. has_new_expr = True
  1949. if not has_new_expr:
  1950. ind += 1
  1951. for expr in graph._exprs:
  1952. for i in expr.inputs:
  1953. if expr.inputs.count(i) != i.users.count(expr):
  1954. add_or_del_count = expr.inputs.count(i) - i.users.count(expr)
  1955. if add_or_del_count > 0:
  1956. i.users.extend([expr] * add_or_del_count)
  1957. else:
  1958. [i.users.remove(expr) for i in range(-add_or_del_count)]
  1959. for o in expr.outputs:
  1960. if o.expr is not expr:
  1961. assert o not in o.expr.outputs
  1962. o.expr = expr
  1963. for node in graph.nodes(False):
  1964. # remove users of node which doesn't use node as input
  1965. node.users = [e for e in node.users if node in e.inputs]
  1966. for expr in graph._exprs:
  1967. graph._namespace.auto_naming_for_outputs(expr)
  1968. self._update_ref()
  1969. for _, graph in self.argdef_graph_map.items():
  1970. graph._reset_ids()
  1971. def __copy__(self):
  1972. cls = self.__class__
  1973. result = cls.__new__(cls)
  1974. result.__dict__.update(self.__dict__)
  1975. return result
  1976. def __deepcopy__(self, memo):
  1977. cls = self.__class__
  1978. result = cls.__new__(cls)
  1979. state = {}
  1980. memo[id(self)] = result
  1981. for k, v in self.__dict__.items():
  1982. if not isinstance(v, weakref.ReferenceType):
  1983. state[k] = copy.deepcopy(v, memo)
  1984. result.__dict__.update(state)
  1985. result._update_ref()
  1986. return result
  1987. def cpp_apply_module_trace(opdef, *args):
  1988. return Apply.apply_module_trace_hook(opdef, *args)
  1989. USER_REGISTERED_MODULE = []
  1990. USER_REGISTERED_FUNCTION = []
  1991. def register_as_builtin(mod_cls: Type[Module]) -> None:
  1992. r"""Registers class ``mod_cls`` (subclass of :class:`~.Module`) as builtin module.
  1993. Args:
  1994. mod_cls: the module class which will be treated as builtin module in tracing.
  1995. """
  1996. USER_REGISTERED_MODULE.append((mod_cls.__module__, mod_cls.__qualname__))
  1997. module_tracer.register_as_builtin(mod_cls)
  1998. def wrap(func: Callable):
  1999. r"""Call this function to register ``func`` as a builtin function.
  2000. This function can be called at module-level scope to register ``func`` as a builtin function.
  2001. A builtin function will be converted to a :class:`CallFunction` Expr in tracing::
  2002. def my_func(x, y):
  2003. return x + y
  2004. import megengine.traced_module as tm
  2005. tm.wrap(my_func)
  2006. This function can also equivalently be used as a decorator::
  2007. @tm.wrap
  2008. def my_func(x, y):
  2009. return x + y
  2010. Args:
  2011. func: the function of the global function to insert into the graph when it's called.
  2012. """
  2013. USER_REGISTERED_FUNCTION.append((func.__module__, func.__qualname__))
  2014. assert callable(func), "func must be a callable"
  2015. assert hasattr(func, "__code__")
  2016. fn_name = func.__code__.co_name
  2017. currentframe = inspect.currentframe()
  2018. assert currentframe is not None
  2019. f = currentframe.f_back
  2020. assert f is not None
  2021. assert (
  2022. f.f_code.co_name == "<module>"
  2023. ), "wrap must be called at the top level of a module"
  2024. Patcher._builtin_functions.append((f.f_globals, fn_name))
  2025. return func
  2026. def _register_all_builtin_module():
  2027. for sub_mod in [M, M.qat, M.quantized, MExternal]:
  2028. for m in getmembers(sub_mod):
  2029. if (
  2030. isclass(m[1])
  2031. and issubclass(m[1], M.Module)
  2032. and m[1] is not M.Sequential
  2033. ):
  2034. module_tracer.register_as_builtin(m[1])
  2035. module_tracer.register_as_builtin(Observer)
  2036. module_tracer.register_as_builtin(MinMaxObserver)
  2037. module_tracer.register_as_builtin(SyncMinMaxObserver)
  2038. module_tracer.register_as_builtin(ExponentialMovingAverageObserver)
  2039. module_tracer.register_as_builtin(SyncExponentialMovingAverageObserver)
  2040. module_tracer.register_as_builtin(HistogramObserver)
  2041. module_tracer.register_as_builtin(PassiveObserver)
  2042. module_tracer.register_as_builtin(LSQ)
  2043. module_tracer.register_as_builtin(TQT)
  2044. module_tracer.register_as_builtin(FakeQuantize)
  2045. module_tracer.register_as_builtin(TM_FakeQuant)
  2046. def trace_module(
  2047. mod: Module, *args: Tuple[Any], **kwargs: Dict[str, Any]
  2048. ) -> TracedModule:
  2049. r"""Traces module ``mod`` and returns corresponding :class:`TracedModule`.
  2050. Args:
  2051. mod: the module will be converted to :class:`TracedModule`.
  2052. args: the positional arguments passed to forward method of ``mod``.
  2053. kwargs: the keyword arguments passed to forward method of ``mod``.
  2054. """
  2055. assert active_module_tracer() is None
  2056. assert isinstance(mod, Module)
  2057. try:
  2058. net_name = mod._name if mod._name else mod.__class__.__name__
  2059. use_sym_shape = set_symbolic_shape(True)
  2060. set_module_tracing()
  2061. set_active_module_tracer(module_tracer(_wrapped_function))
  2062. for cls in [Expr, Node]:
  2063. cls._set_next_id(0)
  2064. with active_module_tracer().patcher:
  2065. global_scope = InternalGraph(name="top", qualname=net_name)
  2066. active_module_tracer().push_scope(global_scope)
  2067. builder = TracedModuleBuilder(mod, True)
  2068. NodeMixin.wrap_safe(
  2069. builder, Input.make(name="top", type=ModuleNode, qualname=net_name)
  2070. )
  2071. forward_argspec = (
  2072. mod.argspec
  2073. if hasattr(mod, "argspec")
  2074. else inspect.getfullargspec(mod.forward)
  2075. )
  2076. args, kwargs = _convert_kwargs_to_args(forward_argspec, args, kwargs, True)
  2077. inputs, _ = tree_flatten((args, kwargs))
  2078. for _, i in enumerate(inputs):
  2079. # assert isinstance(i, Tensor), "not support "
  2080. if isinstance(i, RawTensor):
  2081. NodeMixin.wrap_safe(
  2082. i,
  2083. Input.make(
  2084. name="arg_{}".format(_),
  2085. type=NodeMixin.get_wrapped_type(i),
  2086. qualname="{}.[{}]".format(net_name, "arg_{}".format(_)),
  2087. ),
  2088. )
  2089. rst = builder(*copy.deepcopy(args), **copy.deepcopy(kwargs))
  2090. active_module_tracer().pop_scope()
  2091. traced_mod = builder.build()
  2092. traced_mod.argspec = forward_argspec
  2093. traced_mod.graph._reset_ids()
  2094. has_expr_not_check = False
  2095. if _get_expr_checker():
  2096. has_expr_not_check = (
  2097. active_module_tracer().checker.check_node_not_in_scope()
  2098. )
  2099. if _get_default_checker() or has_expr_not_check:
  2100. with _exclude_from_trace():
  2101. tm_res = traced_mod(*args, **kwargs)
  2102. tm_res, _ = tree_flatten(tm_res, is_leaf=_is_leaf)
  2103. rst, _ = tree_flatten(rst, is_leaf=_is_leaf)
  2104. active_module_tracer().checker.check_net_outputs(tm_res, rst)
  2105. return traced_mod
  2106. finally:
  2107. set_symbolic_shape(use_sym_shape)
  2108. set_active_module_tracer(None)
  2109. unset_module_tracing()