You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

algos.h 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309
  1. /**
  2. * \file dnn/src/aarch64/matrix_mul/algos.h
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #pragma once
  13. #include "src/aarch64/matrix_mul/opr_impl.h"
  14. #include "src/arm_common/matrix_mul/algos.h"
  15. #include "src/fallback/matrix_mul/gemm_common.h"
  16. namespace megdnn {
  17. namespace aarch64 {
  18. class MatrixMulImpl::AlgoF32K8x12x1 final : public AlgoBase {
  19. public:
  20. bool is_reproducible() const override { return true; }
  21. const char* name() const override { return "AARCH64_F32K8X12X1"; }
  22. bool usable(const KernSizeParam&) const override;
  23. size_t get_workspace(const KernSizeParam&) const override;
  24. kern_t get_kern(const KernSizeParam&) const override;
  25. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  26. MEGDNN_DECL_ALGO_TYPE(AARCH64_F32_K8X12X1)
  27. };
  28. class MatrixMulImpl::AlgoF32MK4_8x12x1 final : public AlgoBase {
  29. public:
  30. bool is_reproducible() const override { return true; }
  31. const char* name() const override { return "AARCH64_F32_MK4_K8X12X1"; }
  32. bool usable(const KernSizeParam&) const override;
  33. size_t get_workspace(const KernSizeParam&) const override;
  34. kern_t get_kern(const KernSizeParam&) const override;
  35. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  36. MEGDNN_DECL_ALGO_TYPE(AARCH64_F32_MK4_K8X12X1)
  37. };
  38. class MatrixMulImpl::AlgoF32K4x16x1 final : public AlgoBase {
  39. public:
  40. bool is_reproducible() const override { return true; }
  41. const char* name() const override { return "AARCH64_F32K4X16X1"; }
  42. bool usable(const KernSizeParam&) const override;
  43. size_t get_workspace(const KernSizeParam&) const override;
  44. kern_t get_kern(const KernSizeParam&) const override;
  45. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  46. MEGDNN_DECL_ALGO_TYPE(AARCH64_F32_K4X16X1)
  47. };
  48. class MatrixMulImpl::AlgoF32MK4_4x16 final : public AlgoBase {
  49. public:
  50. bool is_reproducible() const override { return true; }
  51. const char* name() const override { return "AARCH64_F32_MK4_4x16"; }
  52. bool usable(const KernSizeParam&) const override;
  53. size_t get_workspace(const KernSizeParam&) const override;
  54. kern_t get_kern(const KernSizeParam&) const override;
  55. PackMode packmode() const override { return PackMode::NO_PACK; }
  56. MEGDNN_OVERRIDE_MATMUL_DESC(4, 16, 4, 4, AlgoDataType::FLOAT32, MK4)
  57. MEGDNN_DECL_ALGO_TYPE(AARCH64_F32_MK4_4x16)
  58. };
  59. class MatrixMulImpl::AlgoF32Gemv final
  60. : public arm_common::MatrixMulImpl::AlgoF32Gemv {
  61. public:
  62. AlgoF32Gemv() : arm_common::MatrixMulImpl::AlgoF32Gemv() {
  63. m_handle_type = Handle::HandleType::AARCH64;
  64. }
  65. MEGDNN_DECL_ALGO_TYPE(AARCH64_F32_GEMV)
  66. };
  67. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  68. class MatrixMulImpl::AlgoF16K8x24x1 final : public AlgoBase {
  69. public:
  70. bool is_reproducible() const override { return true; }
  71. const char* name() const override { return "AARCH64_F16_K8X24X1"; }
  72. bool usable(const KernSizeParam&) const override;
  73. size_t get_workspace(const KernSizeParam&) const override;
  74. kern_t get_kern(const KernSizeParam&) const override;
  75. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  76. MEGDNN_DECL_ALGO_TYPE(AARCH64_F16_K8X24X1)
  77. };
  78. class MatrixMulImpl::AlgoF16MK8_8x8 final : public AlgoBase {
  79. public:
  80. bool is_reproducible() const override { return true; }
  81. const char* name() const override { return "AARCH64_F16_MK8_8X8"; }
  82. bool usable(const KernSizeParam&) const override;
  83. size_t get_workspace(const KernSizeParam&) const override;
  84. kern_t get_kern(const KernSizeParam&) const override;
  85. PackMode packmode() const override { return PackMode::NO_PACK; }
  86. MEGDNN_OVERRIDE_MATMUL_DESC(8, 8, 8, 2, AlgoDataType::FLOAT16, MK8)
  87. MEGDNN_DECL_ALGO_TYPE(AARCH64_F16_MK8_8X8)
  88. };
  89. #endif
  90. #if __ARM_FEATURE_DOTPROD
  91. class MatrixMulImpl::AlgoInt8x8x32K8x12x4DotProd final : public AlgoBase {
  92. public:
  93. bool is_reproducible() const override { return true; }
  94. const char* name() const override {
  95. return "AARCH64_INT8X8X32_K8X12X4_DOTPROD";
  96. }
  97. bool usable(const KernSizeParam&) const override;
  98. size_t get_workspace(const KernSizeParam&) const override;
  99. kern_t get_kern(const KernSizeParam&) const override;
  100. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  101. MEGDNN_DECL_ALGO_TYPE(AARCH64_INT8X8X32_K8X12X4_DOTPROD)
  102. };
  103. class MatrixMulImpl::AlgoInt8x8x32MK4_8x12x4DotProd final : public AlgoBase {
  104. public:
  105. bool is_reproducible() const override { return true; }
  106. const char* name() const override {
  107. return "AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD";
  108. }
  109. bool usable(const KernSizeParam&) const override;
  110. size_t get_workspace(const KernSizeParam&) const override;
  111. kern_t get_kern(const KernSizeParam&) const override;
  112. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  113. MEGDNN_DECL_ALGO_TYPE(AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD)
  114. };
  115. #else
  116. class MatrixMulImpl::AlgoInt8x8x32MK4_4x4x16 final : public AlgoBase {
  117. public:
  118. bool is_reproducible() const override { return true; }
  119. const char* name() const override { return "AARCH64_INT8X8X32_MK4_4X4X16"; }
  120. bool usable(const KernSizeParam&) const override;
  121. bool preferred(const KernSizeParam&) const override;
  122. size_t get_workspace(const KernSizeParam&) const override;
  123. kern_t get_kern(const KernSizeParam&) const override;
  124. PackMode packmode() const override { return PackMode::DEFAULT; }
  125. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  126. MEGDNN_DECL_ALGO_TYPE(AARCH64_INT8X8X32_MK4_4X4X16)
  127. };
  128. class MatrixMulImpl::AlgoInt8x8x32K4x4x16 final : public AlgoBase {
  129. public:
  130. bool is_reproducible() const override { return true; }
  131. const char* name() const override { return "AARCH64_INT8X8X32_K4X4X16"; }
  132. bool usable(const KernSizeParam&) const override;
  133. bool preferred(const KernSizeParam&) const override;
  134. size_t get_workspace(const KernSizeParam&) const override;
  135. kern_t get_kern(const KernSizeParam&) const override;
  136. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  137. MEGDNN_DECL_ALGO_TYPE(AARCH64_INT8X8X32_K4X4X16)
  138. };
  139. class MatrixMulImpl::AlgoInt8x8x32K8x8x8 final : public AlgoBase {
  140. public:
  141. bool is_reproducible() const override { return true; }
  142. const char* name() const override { return "AARCH64_INT8X8X32_K8X8X8"; }
  143. bool usable(const KernSizeParam&) const override;
  144. bool preferred(const KernSizeParam&) const override;
  145. size_t get_workspace(const KernSizeParam&) const override;
  146. kern_t get_kern(const KernSizeParam&) const override;
  147. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  148. MEGDNN_DECL_ALGO_TYPE(AARCH64_INT8X8X32_K8X8X8)
  149. };
  150. #endif
  151. class MatrixMulImpl::AlgoInt8x8x16K8x8x8 final : public AlgoBase {
  152. public:
  153. bool is_reproducible() const override { return true; }
  154. const char* name() const override { return "AARCH64_INT8X8X16_K8X8X8"; }
  155. bool usable(const KernSizeParam&) const override;
  156. bool preferred(const KernSizeParam&) const override;
  157. size_t get_workspace(const KernSizeParam&) const override;
  158. kern_t get_kern(const KernSizeParam&) const override;
  159. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  160. MEGDNN_DECL_ALGO_TYPE(AARCH64_INT8X8X16_K8X8X8)
  161. };
  162. class MatrixMulImpl::AlgoInt8x8x16K4x4x16 final : public AlgoBase {
  163. public:
  164. bool is_reproducible() const override { return true; }
  165. const char* name() const override { return "AARCH64_INT8X8X16_K4X4X16"; }
  166. bool usable(const KernSizeParam&) const override;
  167. bool preferred(const KernSizeParam&) const override;
  168. size_t get_workspace(const KernSizeParam&) const override;
  169. kern_t get_kern(const KernSizeParam&) const override;
  170. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  171. MEGDNN_DECL_ALGO_TYPE(AARCH64_INT8X8X16_K4X4X16)
  172. };
  173. class MatrixMulImpl::AlgoInt8x8x16MK4_16x12x4 final : public AlgoBase {
  174. public:
  175. bool is_reproducible() const override { return true; }
  176. const char* name() const override {
  177. return "AARCH64_INT8X8X16_MK4_16X12X4";
  178. }
  179. bool usable(const KernSizeParam&) const override;
  180. bool preferred(const KernSizeParam&) const override;
  181. size_t get_workspace(const KernSizeParam&) const override;
  182. kern_t get_kern(const KernSizeParam&) const override;
  183. PackMode packmode() const override { return PackMode::DEFAULT; }
  184. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  185. MEGDNN_DECL_ALGO_TYPE(AARCH64_INT8X8X16_MK4_16X12X4)
  186. };
  187. class MatrixMulImpl::AlgoInt8x8x16MK4_K8x8x8 final : public AlgoBase {
  188. public:
  189. bool is_reproducible() const override { return true; }
  190. const char* name() const override {
  191. return "AARCH64_INT8X8X16_MK4_K8X8X8";
  192. }
  193. bool usable(const KernSizeParam&) const override;
  194. bool preferred(const KernSizeParam&) const override;
  195. size_t get_workspace(const KernSizeParam&) const override;
  196. kern_t get_kern(const KernSizeParam&) const override;
  197. PackMode packmode() const override { return PackMode::DEFAULT; }
  198. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  199. MEGDNN_DECL_ALGO_TYPE(AARCH64_INT8X8X16_MK4_K8X8X8)
  200. };
  201. class MatrixMulImpl::AlgoInt8x8x16MK4_4x4x8 final : public AlgoBase {
  202. public:
  203. bool is_reproducible() const override { return true; }
  204. const char* name() const override { return "AARCH64_INT8X8X16_MK4_4X4X8"; }
  205. bool usable(const KernSizeParam&) const override;
  206. bool preferred(const KernSizeParam&) const override;
  207. size_t get_workspace(const KernSizeParam&) const override;
  208. kern_t get_kern(const KernSizeParam&) const override;
  209. PackMode packmode() const override { return PackMode::DEFAULT; }
  210. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  211. MEGDNN_DECL_ALGO_TYPE(AARCH64_INT8X8X16_MK4_4X4X8)
  212. };
  213. class MatrixMulImpl::AlgoInt16x16x32K12x8x1 final : public AlgoBase {
  214. public:
  215. bool is_reproducible() const override { return true; }
  216. const char* name() const override { return "AARCH64_INT16X16X32_K12X8X1"; }
  217. bool usable(const KernSizeParam&) const override;
  218. bool preferred(const KernSizeParam&) const override;
  219. size_t get_workspace(const KernSizeParam&) const override;
  220. kern_t get_kern(const KernSizeParam&) const override;
  221. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  222. MEGDNN_DECL_ALGO_TYPE(AARCH64_INT16X16X32_K12X8X1)
  223. };
  224. class MatrixMulImpl::AlgoInt16x16x32MK8_8x8 final : public AlgoBase {
  225. public:
  226. bool is_reproducible() const override { return true; }
  227. const char* name() const override { return "AARCH64_INT16X16X32_MK8_8X8"; }
  228. bool usable(const KernSizeParam&) const override;
  229. size_t get_workspace(const KernSizeParam&) const override;
  230. kern_t get_kern(const KernSizeParam&) const override;
  231. PackMode packmode() const override { return PackMode::NO_PACK; }
  232. MEGDNN_OVERRIDE_MATMUL_DESC(8, 8, 8, 2, AlgoDataType::INT16X16X32, MK8)
  233. MEGDNN_DECL_ALGO_TYPE(AARCH64_INT16X16X32_MK8_8X8)
  234. };
  235. #if __ARM_FEATURE_DOTPROD
  236. class MatrixMulImpl::AlgoQuint8K8x8x4DotProd final : public AlgoBase {
  237. public:
  238. bool is_reproducible() const override { return true; }
  239. const char* name() const override {
  240. return "AARCH64_QUINT8_K8X8X4_DOTPROD";
  241. }
  242. bool usable(const KernSizeParam&) const override;
  243. size_t get_workspace(const KernSizeParam&) const override;
  244. kern_t get_kern(const KernSizeParam&) const override;
  245. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  246. MEGDNN_DECL_ALGO_TYPE(AARCH64_QUINT8_K8X8X4_DOTPROD)
  247. };
  248. class MatrixMulImpl::AlgoQuint8GemvDotProd final : public AlgoBase {
  249. public:
  250. bool is_reproducible() const override { return true; }
  251. const char* name() const override { return "AARCH64_QUINT8_GEMV_DOTPROD"; }
  252. bool usable(const KernSizeParam&) const override;
  253. bool preferred(const KernSizeParam&) const override;
  254. size_t get_workspace(const KernSizeParam&) const override { return 0; }
  255. kern_t get_kern(const KernSizeParam&) const override;
  256. AlgoSet algoset() const override { return AlgoSet::ALGO_TYPE_GEMV; }
  257. PackMode packmode() const override { return PackMode::NO_PACK; }
  258. MEGDNN_OVERRIDE_MATMUL_DESC(8, 16, 1, 2, AlgoDataType::QUINT8X8X32, DEFAULT)
  259. MEGDNN_DECL_ALGO_TYPE(AARCH64_QUINT8_GEMV_DOTPROD)
  260. };
  261. #else
  262. class MatrixMulImpl::AlgoQuint8K8x8x8 final : public AlgoBase {
  263. public:
  264. bool is_reproducible() const override { return true; }
  265. const char* name() const override { return "AARCH64_QUINT8_K8X8X8"; }
  266. bool usable(const KernSizeParam&) const override;
  267. size_t get_workspace(const KernSizeParam&) const override;
  268. kern_t get_kern(const KernSizeParam&) const override;
  269. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  270. MEGDNN_DECL_ALGO_TYPE(AARCH64_QUINT8_K8X8X8)
  271. };
  272. #endif
  273. } // namespace aarch64
  274. } // namespace megdnn
  275. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台