You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

traced_module.py 63 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import builtins
  10. import collections
  11. import copy
  12. import ctypes
  13. import fnmatch
  14. import functools
  15. import inspect
  16. import keyword
  17. import re
  18. import weakref
  19. from inspect import getcallargs, getmembers, isclass, ismethod
  20. from itertools import chain
  21. from typing import Callable, Dict, Iterable, List, Optional, Sequence, Type, Union
  22. from megengine import tensor
  23. from ... import functional as F
  24. from ... import get_logger
  25. from ... import module as M
  26. from ...core._imperative_rt.core2 import Tensor as RawTensor
  27. from ...core._imperative_rt.core2 import (
  28. is_tracing_module,
  29. set_module_tracing,
  30. unset_module_tracing,
  31. )
  32. from ...core._trace_option import set_symbolic_shape
  33. from ...core.tensor.array_method import ArrayMethodMixin
  34. from ...module import Module
  35. from ...module.qat import QATModule
  36. from ...quantization.fake_quant import LSQ, TQT, FakeQuantize, _FakeQuantize
  37. from ...quantization.observer import (
  38. ExponentialMovingAverageObserver,
  39. HistogramObserver,
  40. MinMaxObserver,
  41. Observer,
  42. PassiveObserver,
  43. SyncExponentialMovingAverageObserver,
  44. SyncMinMaxObserver,
  45. )
  46. from ...tensor import Tensor
  47. from .expr import Apply, CallFunction, CallMethod, Constant, Expr, GetAttr, Input
  48. from .fake_quant import FakeQuantize as TM_FakeQuant
  49. from .module_tracer import (
  50. PatchedFn,
  51. Patcher,
  52. active_module_tracer,
  53. get_tensor_wrapable_method,
  54. module_tracer,
  55. set_active_module_tracer,
  56. )
  57. from .node import ModuleNode, Node, NodeMixin, TensorNode
  58. from .pytree import ArgsIndex, tree_flatten
  59. logger = get_logger(__name__)
  60. def _is_builtin_name(name: str) -> bool:
  61. return (
  62. name in builtins.__dict__
  63. or name in keyword.kwlist
  64. or name in {"inf", "nan", "NoneType"}
  65. )
  66. def _is_leaf(node):
  67. assert isinstance(node, RawTensor), "doesn't support {} in return values".format(
  68. type(node)
  69. )
  70. return isinstance(node, RawTensor)
  71. _enable_node_to_tensor = False
  72. def _convert_node_flag():
  73. return _enable_node_to_tensor
  74. def _set_convert_node_flag(flag: bool = False):
  75. global _enable_node_to_tensor
  76. pre_flag = _enable_node_to_tensor
  77. _enable_node_to_tensor = flag
  78. return pre_flag
  79. def _node_to_tensor(*args, **kwargs):
  80. tensors = []
  81. nodes, tree_def = tree_flatten((args, kwargs))
  82. for n in nodes:
  83. if isinstance(n, TensorNode):
  84. if n.top_graph is not None:
  85. active_module_tracer().current_scope()._add_input(n)
  86. value = n.value
  87. if value is None:
  88. flag = _set_convert_node_flag(False)
  89. unset_module_tracing()
  90. value = F.zeros(shape=n._shape, dtype=n._dtype)
  91. set_module_tracing()
  92. _set_convert_node_flag(flag)
  93. orig_n = NodeMixin.get(value, None)
  94. if orig_n is None or "setitem" not in orig_n._name:
  95. NodeMixin.wrap_safe(value, n)
  96. tensors.append(value)
  97. else:
  98. tensors.append(n)
  99. tensors = tree_def.unflatten(tensors)
  100. return tensors
  101. def _tensor_to_node(tensors):
  102. if tensors is None:
  103. return None
  104. nodes = []
  105. tensors, out_def = tree_flatten(tensors)
  106. for t in tensors:
  107. if isinstance(t, Tensor):
  108. n = NodeMixin.get(t, None)
  109. if isinstance(n, TensorNode):
  110. n.value = t
  111. nodes.append(n)
  112. else:
  113. nodes.append(t)
  114. else:
  115. nodes.append(t)
  116. nodes = out_def.unflatten(nodes)
  117. return nodes
  118. def _wrap_method_to_tensor_node():
  119. def _any_method(name):
  120. def _any(*args, **kwargs):
  121. args, kwargs = _node_to_tensor(*args, **kwargs)
  122. attr = getattr(args[0], name)
  123. outs = attr
  124. if callable(attr):
  125. outs = attr(*(args[1:]), **kwargs)
  126. if name == "__setitem__":
  127. _node_to_tensor(outs)
  128. return None
  129. outs = _tensor_to_node(outs)
  130. return outs
  131. return _any
  132. tensor_method_patch = []
  133. for method in get_tensor_wrapable_method():
  134. patch = PatchedFn(TensorNode, method)
  135. if type(getattr(Tensor, method)) == property:
  136. patch.set_func(property(_any_method(method)))
  137. else:
  138. patch.set_func(_any_method(method))
  139. tensor_method_patch.append(patch)
  140. return tensor_method_patch
  141. def _convert_node_and_tensor(orig_func):
  142. @functools.wraps(orig_func)
  143. def _convert(*args, **kwargs):
  144. if _convert_node_flag() and is_tracing_module():
  145. args, kwargs = _node_to_tensor(*args, **kwargs)
  146. rst = orig_func(*args, **kwargs, method_func=_convert)
  147. rst = _tensor_to_node(rst)
  148. return rst
  149. else:
  150. rst = orig_func(*args, **kwargs)
  151. return rst
  152. return _convert
  153. def _wrap_mnode_getattr(orig_getattr):
  154. @functools.wraps(orig_getattr)
  155. def wraped_fn(self, name):
  156. obj = self.owner
  157. if self.top_graph is not None:
  158. active_module_tracer().current_scope()._add_input(self)
  159. attr = getattr(obj, name)
  160. node = attr
  161. full_name = None
  162. if id(attr) in active_module_tracer().id2name:
  163. full_name = active_module_tracer().id2name[id(attr)]
  164. if not isinstance(attr, TracedModuleBuilder):
  165. if isinstance(attr, Module):
  166. attr = TracedModuleBuilder(attr)
  167. setattr(obj, name, attr)
  168. active_module_tracer().id2name[id(attr)] = full_name
  169. if isinstance(attr, (NodeMixin, RawTensor)):
  170. if full_name:
  171. scope_name = active_module_tracer().current_scope()._module_name
  172. if scope_name:
  173. full_name = full_name[len(scope_name) + 1 :]
  174. else:
  175. full_name = name
  176. else:
  177. full_name = name
  178. NodeMixin.wrap(
  179. attr,
  180. lambda: GetAttr.make(
  181. self,
  182. name,
  183. type=NodeMixin.get_wrapped_type(attr),
  184. orig_name=full_name,
  185. ),
  186. )
  187. if isinstance(attr, (NodeMixin, RawTensor)):
  188. node = NodeMixin.get(attr)
  189. if isinstance(node, ModuleNode):
  190. node._owner = weakref.ref(attr)
  191. return node
  192. return wraped_fn
  193. def _wrap_mnode_call(orig_call):
  194. @functools.wraps(orig_call)
  195. def wraped_fn(self, *args, **kwargs):
  196. obj = self.owner
  197. if self.top_graph is not None:
  198. active_module_tracer().current_scope()._add_input(self)
  199. rst = obj(*args, **kwargs)
  200. return rst
  201. return wraped_fn
  202. def _init_id2name(mod: Module, prefix: str = ""):
  203. id2name = {
  204. id(m): "%s.%s" % (prefix, key)
  205. for key, m in chain(
  206. mod.named_modules(), mod.named_parameters(), mod.named_buffers()
  207. )
  208. }
  209. return id2name
  210. class _InsertExprs:
  211. def __init__(self, graph, expr: Optional[Expr] = None):
  212. self.graph = graph
  213. self.global_scope = InternalGraph(
  214. graph._name, graph._prefix_name, graph._module_name
  215. )
  216. self.global_scope._used_names.update(graph._used_names)
  217. self.expr = expr
  218. self._tensor_method_patch = None
  219. def __enter__(self):
  220. self.use_sym_shape = set_symbolic_shape(True)
  221. set_module_tracing()
  222. _set_convert_node_flag(True)
  223. assert active_module_tracer() is None
  224. module = self.graph.inputs[0].owner
  225. _wrap_func = lambda x: _convert_node_and_tensor(_wrapped_function(x))
  226. set_active_module_tracer(
  227. module_tracer(_wrap_func, _init_id2name(module, self.graph._module_name))
  228. )
  229. active_module_tracer().patcher.__enter__()
  230. for cls, name, func in [
  231. [ModuleNode, "__getattr__", _wrap_mnode_getattr],
  232. [ModuleNode, "__call__", _wrap_mnode_call],
  233. [TracedModuleBuilder, "__call__", _convert_node_and_tensor],
  234. ]:
  235. active_module_tracer().patcher.patch_function(cls, name, func)
  236. self._tensor_method_patch = _wrap_method_to_tensor_node()
  237. active_module_tracer().push_scope(self.global_scope)
  238. def __exit__(self, ty, va, tr):
  239. if va is not None:
  240. return False
  241. set_symbolic_shape(self.use_sym_shape)
  242. unset_module_tracing()
  243. active_module_tracer().patcher.__exit__(ty, va, tr)
  244. _set_convert_node_flag(False)
  245. while self._tensor_method_patch:
  246. pf = self._tensor_method_patch.pop()
  247. pf.set_func(pf.origin_fn)
  248. module = self.graph.inputs[0].owner
  249. for mod, parent in module.modules(with_parent=True):
  250. name = mod._name
  251. if isinstance(mod, TracedModuleBuilder):
  252. mod = mod.build()
  253. if hasattr(mod, "graph"):
  254. for node in mod.graph.nodes():
  255. node.value = None
  256. setattr(parent, name, mod)
  257. set_active_module_tracer(None)
  258. for node in self.global_scope.nodes():
  259. node.value = None
  260. extra_inp_nodes = set(self.global_scope.inputs)
  261. max_inp_expr_idx = -1
  262. for node in extra_inp_nodes:
  263. assert (
  264. node.top_graph == self.graph
  265. ), "The input node ({}) is not in the graph ({})".format(node, self.graph)
  266. if isinstance(node, TensorNode) and node.expr in self.graph._exprs:
  267. max_inp_expr_idx = max(
  268. max_inp_expr_idx, self.graph._exprs.index(node.expr)
  269. )
  270. max_inp_expr_idx += 1
  271. insert_index = -1
  272. if self.expr is not None:
  273. insert_index = self.graph._exprs.index(self.expr)
  274. insert_index += 1
  275. if insert_index < max_inp_expr_idx:
  276. insert_index = max_inp_expr_idx
  277. anchor_index = insert_index - 1
  278. if anchor_index >= 0:
  279. logger.info(
  280. "The new expr will be inserted after ( {} )".format(
  281. self.graph._exprs[anchor_index]
  282. )
  283. )
  284. for expr in self.global_scope._exprs:
  285. self.graph._exprs.insert(insert_index, expr)
  286. insert_index += 1
  287. self.graph._used_names.update(self.global_scope._used_names)
  288. graph = self.graph
  289. while graph.top_graph is not None:
  290. graph = graph.top_graph
  291. graph.inputs[0].owner._update_ref()
  292. return True
  293. class InternalGraph:
  294. """
  295. ``InternalGraph`` is a graph consist of ``Node`` and ``Expr``, it is used to represent the execution procedure of Module's forward method.
  296. Attributes:
  297. _exprs: List of Exprs in order of execution
  298. _inputs: Input Nodes of InternalGraph
  299. _outputs: Output Nodes of InternalGraph
  300. """
  301. _exprs = None # type: List[Expr]
  302. _inputs = None # type: List[Node]
  303. _outputs = None # type: List[Node]
  304. _top_graph = None
  305. def __init__(self, name: str = None, prefix_name: str = "", module_name: str = ""):
  306. self._exprs = []
  307. self._inputs = []
  308. self._outputs = []
  309. self._watch_point = []
  310. self._end_point = []
  311. self._used_names = {}
  312. self._rst = collections.defaultdict(list)
  313. self._name = name
  314. self._prefix_name = prefix_name
  315. self._module_name = module_name
  316. def _insert(self, expr):
  317. self._exprs.append(expr)
  318. def _create_unique_name(self, name: str) -> str:
  319. assert isinstance(name, str), "The name must be a str"
  320. name = re.sub("[^0-9a-zA-Z_]+", "_", name)
  321. if name[0].isdigit():
  322. name = "_{}".format(name)
  323. while name in self._used_names or _is_builtin_name(name):
  324. match = re.match(r"(.*)_(\d+)$", name)
  325. if match is None:
  326. name = name + "_1"
  327. else:
  328. base, num = match.group(1, 2)
  329. name = "{}_{}".format(base, int(num) + 1)
  330. self._used_names.setdefault(name)
  331. return name
  332. @property
  333. def inputs(self):
  334. return self._inputs
  335. @property
  336. def outputs(self):
  337. return self._outputs
  338. @property
  339. def top_graph(self):
  340. if self._top_graph:
  341. return self._top_graph()
  342. return None
  343. def exprs(self, recursive=True):
  344. return ExprFilter(_expr_iter(self, recursive))
  345. def nodes(self, recursive=True):
  346. return NodeFilter(_node_iter(self, recursive))
  347. def get_function_by_type(self, func: Callable = None, recursive=True):
  348. return self.exprs(recursive).call_function(func)
  349. def get_method_by_type(self, method: str = None, recursive=True):
  350. return self.exprs(recursive).call_method(method)
  351. def get_expr_by_id(self, expr_id: List[int] = None, recursive=True):
  352. return self.exprs(recursive).expr_id(expr_id)
  353. def get_module_by_type(self, module_cls: Module, recursive=True):
  354. assert issubclass(module_cls, Module)
  355. return self.nodes(recursive).type(module_cls, ModuleNode)
  356. def get_node_by_id(self, node_id: List[int] = None, recursive=True):
  357. return self.nodes(recursive).node_id(node_id)
  358. def get_node_by_name(
  359. self, name: str = None, ignorecase: bool = True, recursive=True
  360. ):
  361. return self.nodes(recursive).name(name, ignorecase)
  362. def _add_input(self, i):
  363. self._inputs.append(i)
  364. def _add_output(self, o):
  365. self._outputs.append(o)
  366. def _replace_inputs_outputs(self, repl_dict, prefix_name="", module_name=""):
  367. for node, repl_node in repl_dict.items():
  368. assert node in self._inputs or node in self._outputs
  369. for i in node.users:
  370. if i not in repl_node.users:
  371. repl_node.users.append(i)
  372. for idx, i in enumerate(self._inputs):
  373. if i in repl_dict:
  374. self._inputs[idx] = repl_dict[i]
  375. for idx, o in enumerate(self._outputs):
  376. if o in repl_dict:
  377. repl_dict[o]._orig_name = "{}{}".format(module_name, o._orig_name)
  378. self._outputs[idx] = repl_dict[o]
  379. for expr in self._exprs:
  380. for idx, i in enumerate(expr.inputs):
  381. assert isinstance(
  382. i._name, str
  383. ), "The node ({}) name must be a str".format(i)
  384. if i in repl_dict:
  385. expr.inputs[idx] = repl_dict[i]
  386. elif isinstance(i, TensorNode) and prefix_name not in i._name:
  387. if i.top_graph != active_module_tracer().current_scope():
  388. i._name = (
  389. active_module_tracer()
  390. .current_scope()
  391. ._create_unique_name(prefix_name + i._name.lstrip("_"))
  392. )
  393. i._orig_name = "{}{}".format(module_name, i._orig_name)
  394. for idx, o in enumerate(expr.outputs):
  395. assert isinstance(
  396. o._name, str
  397. ), "The node ({}) name must be a str".format(i)
  398. if o in repl_dict:
  399. expr.outputs[idx] = repl_dict[o]
  400. expr.outputs[idx].expr = expr
  401. elif isinstance(o, TensorNode) and prefix_name not in i._name:
  402. if o.top_graph != active_module_tracer().current_scope():
  403. o._name = (
  404. active_module_tracer()
  405. .current_scope()
  406. ._create_unique_name(prefix_name + o._name.lstrip("_"))
  407. )
  408. o._orig_name = "{}{}".format(module_name, o._orig_name)
  409. def get_dep_exprs(self, nodes: Sequence[Node]) -> List[Expr]:
  410. if not isinstance(nodes, Sequence):
  411. nodes = (nodes,)
  412. ret = list()
  413. queue = list(nodes)
  414. visited_queue = list()
  415. while queue:
  416. node = queue.pop()
  417. visited_queue.append(node)
  418. expr = node.expr
  419. if expr not in ret:
  420. ret.append(expr)
  421. for i in expr.inputs:
  422. if i not in queue and i not in visited_queue:
  423. queue.append(i)
  424. return ret
  425. def reset_inputs(self, *args, **kwargs):
  426. forma_mnode = self.inputs[0]
  427. actual_mnodes = forma_mnode.actual_node
  428. call_nodes = []
  429. for n in actual_mnodes:
  430. for c_expr in n.users:
  431. if isinstance(c_expr, CallMethod) and c_expr.method == "__call__":
  432. call_nodes.append((c_expr, n))
  433. moudle = forma_mnode.owner
  434. assert moudle._is_top, "reset_inputs only support the top-level graph"
  435. inputs, tree_def = tree_flatten(((moudle, *args), kwargs))
  436. def create_node(val: Tensor):
  437. node = Input(type=TensorNode).outputs[0]
  438. node.shape = val.shape
  439. node.dtype = val.dtype
  440. return node
  441. formal_node_inputs = [
  442. forma_mnode,
  443. ]
  444. org_argdef = list(moudle.argdef_graph_map.keys())[0]
  445. if call_nodes:
  446. org_argdef = call_nodes[0][0].arg_def
  447. for v in inputs[1:]:
  448. assert isinstance(v, RawTensor)
  449. formal_node_inputs.append(create_node(v))
  450. actual_nodes = []
  451. for e, n in call_nodes:
  452. e.arg_def = tree_def
  453. actual_node_inputs = [
  454. n,
  455. ]
  456. for v in inputs[1:]:
  457. actual_node_inputs.append(create_node(v))
  458. for org_n in e.inputs:
  459. org_n.users.pop(e)
  460. e.inputs[:] = actual_node_inputs
  461. e.const_val = []
  462. actual_nodes.append(actual_node_inputs[1:])
  463. self._inputs[:] = formal_node_inputs
  464. moudle.argdef_graph_map[tree_def] = moudle.argdef_graph_map.pop(org_argdef)
  465. moudle.argdef_outdef_map[tree_def] = moudle.argdef_outdef_map.pop(org_argdef)
  466. # return formal_node_inputs[1:], actual_nodes
  467. return formal_node_inputs[1:]
  468. def add_input_node(self, shape, dtype="float32", name="args"):
  469. forma_mnode = self.inputs[0]
  470. actual_mnodes = forma_mnode.actual_node
  471. moudle = forma_mnode.owner
  472. assert moudle._is_top, "add_input_node only support the top-level graph"
  473. call_nodes = []
  474. for n in actual_mnodes:
  475. for c_expr in n.users:
  476. if isinstance(c_expr, CallMethod) and c_expr.method == "__call__":
  477. call_nodes.append(c_expr)
  478. def create_node(name=None, is_input: bool = True):
  479. if is_input:
  480. node = Input(type=TensorNode, name=name).outputs[0]
  481. else:
  482. node = TensorNode(expr=None, name=None)
  483. node.shape = shape
  484. node.dtype = dtype
  485. return node
  486. org_argdef = list(moudle.argdef_graph_map.keys())[0]
  487. if call_nodes:
  488. org_argdef = call_nodes[0].arg_def
  489. args, kwargs = org_argdef.unflatten(self._inputs)
  490. formal_inp_node = create_node(self._create_unique_name(name), True)
  491. inputs, tree_def = tree_flatten(
  492. ((*args, formal_inp_node), kwargs),
  493. is_const_leaf=lambda x: not isinstance(x, (TensorNode, ModuleNode)),
  494. )
  495. self._inputs[:] = inputs[:]
  496. actual_inp_nodes = []
  497. for e in call_nodes:
  498. args, kwargs = e.unflatten_args(e.inputs)
  499. args = args + (create_node(False),)
  500. inputs, tree_def = tree_flatten(
  501. (args, kwargs),
  502. is_const_leaf=lambda x: not isinstance(x, (TensorNode, ModuleNode)),
  503. )
  504. e.inputs[:] = inputs[:]
  505. e.arg_def = tree_def
  506. actual_inp_nodes.append(args[-1])
  507. moudle.argdef_graph_map[tree_def] = moudle.argdef_graph_map.pop(org_argdef)
  508. moudle.argdef_outdef_map[tree_def] = moudle.argdef_outdef_map.pop(org_argdef)
  509. # return formal_inp_node, actual_inp_nodes
  510. return formal_inp_node
  511. def reset_outputs(self, outputs):
  512. outputs, out_def = tree_flatten(
  513. outputs, is_leaf=lambda x: isinstance(x, TensorNode),
  514. )
  515. forma_mnode = self.inputs[0]
  516. moudle = forma_mnode.owner
  517. assert moudle._is_top, "reset_outputs only support the top-level graph"
  518. actual_mnodes = forma_mnode.actual_node
  519. call_nodes = []
  520. for n in actual_mnodes:
  521. for c_expr in n.users:
  522. if isinstance(c_expr, CallMethod) and c_expr.method == "__call__":
  523. call_nodes.append((c_expr))
  524. def create_node(val: TensorNode, expr: Expr):
  525. node = TensorNode(expr)
  526. node.shape = val.shape
  527. node.dtype = val.dtype
  528. return node
  529. tree_def = list(moudle.argdef_graph_map.keys())[0]
  530. if call_nodes:
  531. tree_def = call_nodes[0].arg_def
  532. actual_nodes = []
  533. for e in call_nodes:
  534. actual_node_outputs = []
  535. for v in outputs:
  536. actual_node_outputs.append(create_node(v, e))
  537. e.outputs[:] = actual_node_outputs
  538. e.out_def = out_def
  539. actual_nodes.append(actual_node_outputs)
  540. self._outputs[:] = outputs
  541. moudle.argdef_outdef_map[tree_def] = out_def
  542. return actual_nodes
  543. def add_output_node(self, node: TensorNode):
  544. forma_mnode = self.inputs[0]
  545. moudle = forma_mnode.owner
  546. assert moudle._is_top, "add_output_node only support the top-level graph"
  547. actual_mnodes = forma_mnode.actual_node
  548. call_nodes = []
  549. for n in actual_mnodes:
  550. for c_expr in n.users:
  551. if isinstance(c_expr, CallMethod) and c_expr.method == "__call__":
  552. call_nodes.append((c_expr))
  553. def create_node(val: TensorNode, expr: Expr):
  554. node = TensorNode(expr)
  555. node.shape = val.shape
  556. node.dtype = val.dtype
  557. return node
  558. tree_def = list(moudle.argdef_graph_map.keys())[0]
  559. if call_nodes:
  560. tree_def = call_nodes[0].arg_def
  561. org_out_def = moudle.argdef_outdef_map[tree_def]
  562. org_outs = org_out_def.unflatten(self._outputs)
  563. outputs, out_def = tree_flatten(
  564. (org_outs, node), is_leaf=lambda x: isinstance(x, TensorNode),
  565. )
  566. self._outputs[:] = outputs
  567. actual_out_nodes = []
  568. for e in call_nodes:
  569. actual_node = create_node(node, e)
  570. org_outs = org_out_def.unflatten(e.outputs)
  571. outputs, out_def = tree_flatten(
  572. (org_outs, actual_node), is_leaf=lambda x: isinstance(x, TensorNode),
  573. )
  574. e.outputs[:] = outputs
  575. e.out_def = out_def
  576. actual_out_nodes.append(actual_node)
  577. moudle.argdef_outdef_map[tree_def] = out_def
  578. return actual_out_nodes
  579. def insert_exprs(self, expr: Optional[Expr] = None):
  580. if expr is not None:
  581. assert expr.top_graph == self, "Expr to insert after is not in graph."
  582. return _InsertExprs(self, expr)
  583. def replace_node(self, repl_dict: Dict[Node, Node]):
  584. while repl_dict:
  585. node, repl_node = repl_dict.popitem()
  586. # check graph inputs and outputs
  587. # assert node not in self.inputs, "Cannot replace inputs"
  588. for i, n in enumerate(self.outputs):
  589. if n is node:
  590. self.outputs[i] = repl_node
  591. # update users of node and repl_node
  592. # update inputs of expr in node.users
  593. graph = repl_node.top_graph
  594. assert graph is not None
  595. index = graph._exprs.index(repl_node.expr)
  596. dep_exprs = self.get_dep_exprs(repl_node)
  597. i = 0
  598. while i < len(node.users):
  599. n = node.users[i]
  600. if n in graph._exprs and index >= graph._exprs.index(n):
  601. i += 1
  602. continue
  603. if n in dep_exprs:
  604. logger.info("Find a loop: ignore this replacement once")
  605. logger.info("node: %s" % node.__repr__())
  606. logger.info("expr: %s" % n.__repr__())
  607. i += 1
  608. continue
  609. repl_node.users.append(n)
  610. node.users.pop(i)
  611. idx = n.inputs.index(node)
  612. n.inputs[idx] = repl_node
  613. def compile(self):
  614. """
  615. Delete unused expr.
  616. """
  617. dep_exprs = self.get_dep_exprs(self.outputs)
  618. i = 0
  619. while i < len(self._exprs):
  620. expr = self._exprs[i]
  621. if expr in dep_exprs or expr._disable_remove:
  622. i += 1
  623. continue
  624. for n in expr.inputs:
  625. n.users.remove(expr)
  626. self._exprs.remove(expr)
  627. def interpret(self, *inputs):
  628. node2value = {}
  629. end_nodes_set = set(self._end_point)
  630. endnode2value = {}
  631. def get_all_endnode_val(n, v):
  632. if n in end_nodes_set:
  633. endnode2value[n] = v
  634. end_nodes_set.remove(n)
  635. return not end_nodes_set
  636. return False
  637. for n, v in zip(self._inputs, inputs):
  638. node2value[n] = v
  639. if n in self._watch_point:
  640. self._rst[n].append(v)
  641. if n in self._end_point and get_all_endnode_val(n, v):
  642. return list(endnode2value[i] for i in self._end_point)
  643. for expr in self._exprs:
  644. values = expr.interpret(*list(node2value[i] for i in expr.inputs))
  645. if values is not None:
  646. for n, v in zip(expr.outputs, values):
  647. node2value[n] = v
  648. if n in self._watch_point:
  649. self._rst[n] = v
  650. if self._end_point and get_all_endnode_val(n, v):
  651. return list(endnode2value[i] for i in self._end_point)
  652. return list(node2value[i] for i in self._outputs)
  653. def eval(self, *inputs):
  654. assert len(inputs) == len(self._inputs) - 1
  655. inp = [self._inputs[0].owner] + list(inputs)
  656. return self.interpret(*inp)
  657. def __repr__(self):
  658. return self.__format__()
  659. def __format__(self, format_spec: str = "") -> str:
  660. saved_format_spec = Node.set_format_spec(format_spec)
  661. name = ""
  662. if self._name:
  663. name = "%s.Graph" % self._name
  664. res = "{} ({}) {{\n\t{}\n\treturn {}\n}}".format(
  665. name,
  666. ", ".join(str(i) for i in self._inputs),
  667. "\n\t".join("{}".format(str(i)) for i in self._exprs),
  668. ", ".join(str(i) for i in self._outputs),
  669. )
  670. Node.set_format_spec(saved_format_spec)
  671. return res
  672. def __getstate__(self):
  673. state = self.__dict__.copy()
  674. if "_top_graph" in state:
  675. state.pop("_top_graph")
  676. return state
  677. def _get_meth_name(obj, func):
  678. tp = obj if isinstance(obj, type) else type(obj)
  679. for cls in tp.mro():
  680. for k, v in cls.__dict__.items():
  681. if v == func:
  682. return k
  683. return None
  684. def _wrapped_function(orig_func):
  685. @functools.wraps(orig_func)
  686. def wrapped_fn(*args, **kwargs):
  687. method_func = wrapped_fn
  688. if "method_func" in kwargs:
  689. method_func = kwargs.pop("method_func")
  690. if is_tracing_module():
  691. unset_module_tracing()
  692. inputs, tree_def = tree_flatten((args, kwargs))
  693. for i in inputs:
  694. if not NodeMixin.get(i, None):
  695. if isinstance(i, (RawTensor, NodeMixin)):
  696. NodeMixin.wrap_safe(i, Constant.make(i))
  697. meth_name, arg_type = None, None
  698. if args:
  699. meth_name = _get_meth_name(args[0], method_func)
  700. arg_type = args[0] if isinstance(args[0], type) else type(args[0])
  701. if meth_name and arg_type and issubclass(arg_type, RawTensor):
  702. self = inputs[0]
  703. if meth_name == "__new__":
  704. if all([not isinstance(i, RawTensor) for i in inputs]):
  705. # only trace Tensor.__new__() when there are tensors in args
  706. set_module_tracing()
  707. return orig_func(*args, **kwargs)
  708. if isinstance(args[1], RawTensor):
  709. node = NodeMixin.get(inputs[1])
  710. inputs[1] = copy.copy(inputs[1])
  711. # copy inputs[1] to avoid tensor and Tensor(tensor) share same m_tensor, which will cause they have same _NodeMixin__node in tracing.
  712. NodeMixin.wrap_safe(inputs[1], node)
  713. args, kwargs = tree_def.unflatten(inputs)
  714. call_node = CallMethod.make(self, meth_name)
  715. else:
  716. call_node = CallMethod.make(NodeMixin.get(self), meth_name)
  717. call_node.add_inputs(inputs[1:])
  718. else:
  719. call_node = CallFunction.make(orig_func)
  720. call_node.add_inputs(inputs)
  721. call_node.arg_def = tree_def
  722. rst = orig_func(*args, **kwargs)
  723. if meth_name == "__setitem__":
  724. rst = self
  725. if rst is not None:
  726. outputs, out_def = tree_flatten(rst, is_leaf=_is_leaf)
  727. call_node.out_def = out_def
  728. else:
  729. outputs = None
  730. call_node.add_outputs(outputs)
  731. set_module_tracing()
  732. return rst
  733. return orig_func(*args, **kwargs)
  734. return wrapped_fn
  735. class TracedModuleBuilder(NodeMixin):
  736. _mod = None # type: Module
  737. _body = None # type: InternalGraph
  738. _is_builtin = None # type: bool
  739. _argdef_graph_map = None # type: Dict[Treedef, "InternalGraph"]
  740. _argdef_outdef_map = None # type: Dict[Treedef, Treedef]
  741. nodes = None
  742. __builder_attributes__ = [
  743. "_mod",
  744. "_body",
  745. "_NodeMixin__node",
  746. "_is_builtin",
  747. "build",
  748. "_record_wrapped_nodes",
  749. "_argdef_graph_map",
  750. "_argdef_outdef_map",
  751. "nodes",
  752. "__class__",
  753. "__dict__",
  754. ]
  755. def __init__(self, mod, is_top_module=False):
  756. super(TracedModuleBuilder, self).__init__()
  757. assert isinstance(mod, Module)
  758. self._mod = mod
  759. self._body = None
  760. self._is_top = is_top_module
  761. self._is_builtin = (
  762. True
  763. if isinstance(mod, (Observer, _FakeQuantize))
  764. else module_tracer.is_builtin(mod)
  765. )
  766. if isinstance(self._mod, QATModule):
  767. unset_module_tracing()
  768. self._check_qat_module(self._mod)
  769. set_module_tracing()
  770. self._argdef_graph_map = {}
  771. self._argdef_outdef_map = {}
  772. self.nodes = set()
  773. # The builder will be passed to self._mod.forward as 'self' argument. If the 'forward' uses super().xxx to call method of its base classes, the trace procedure will throw exceprion, because the builder doesn't inherit from self._mod.__bases__.
  774. # modify self.__class__ and let the builder inherit from TracedModuleBuilder and mod.__class__.
  775. self.__class__ = type(
  776. "TracedModuleBuilder",
  777. (TracedModuleBuilder, mod.__class__),
  778. dict(TracedModuleBuilder.__dict__),
  779. )
  780. def _check_qat_module(self, qat_module):
  781. def isbuiltin(m):
  782. return m is None or module_tracer.is_builtin(m)
  783. if qat_module.with_act:
  784. act_observer = qat_module.act_observer
  785. act_fakequant = qat_module.act_fake_quant
  786. if not isbuiltin(act_observer) or not isbuiltin(act_fakequant):
  787. qparams = (
  788. act_observer.get_qparams()
  789. if hasattr(act_observer, "get_qparams")
  790. else act_fakequant.get_qparams()
  791. )
  792. dtype = (
  793. act_observer.dtype
  794. if hasattr(act_observer, "dtype")
  795. else act_fakequant.dtype
  796. )
  797. qat_module.act_observer = None
  798. qat_module.act_fake_quant = TM_FakeQuant(dtype)
  799. qat_module.act_fake_quant.set_qparams(qparams)
  800. if qat_module.with_weight:
  801. weight_observer = qat_module.weight_observer
  802. weight_fakequant = qat_module.weight_fake_quant
  803. if not isbuiltin(weight_observer) or not isbuiltin(weight_fakequant):
  804. qparams = (
  805. weight_observer.get_qparams()
  806. if hasattr(weight_observer, "get_qparams")
  807. else weight_fakequant.get_qparams()
  808. )
  809. dtype = (
  810. weight_observer.dtype
  811. if hasattr(weight_observer, "dtype")
  812. else weight_fakequant.dtype
  813. )
  814. qat_module.weight_observer = None
  815. qat_module.weight_fake_quant = TM_FakeQuant(dtype)
  816. qat_module.weight_fake_quant.set_qparams(qparams)
  817. def build(self):
  818. if self._is_builtin or isinstance(self._mod, TracedModule):
  819. if module_tracer.is_builtin(self._mod) or isinstance(
  820. self._mod, TracedModule
  821. ):
  822. mod_type = type(self._mod)
  823. else:
  824. assert isinstance(self._mod, (Observer, _FakeQuantize))
  825. mod_type = (
  826. Observer if isinstance(self._mod, Observer) else _FakeQuantize
  827. )
  828. for node in self.nodes:
  829. node.module_type = mod_type
  830. return self._mod
  831. else:
  832. is_qat = isinstance(self._mod, QATModule)
  833. traced_module = TracedModule(
  834. self._is_top, self._argdef_graph_map, self._argdef_outdef_map, is_qat
  835. )
  836. for _, g in self._argdef_graph_map.items():
  837. g.compile()
  838. for k, v in self.__dict__.items():
  839. if k not in TracedModuleBuilder.__builder_attributes__:
  840. if isinstance(v, TracedModuleBuilder):
  841. v = v.build()
  842. setattr(traced_module, k, v)
  843. if isinstance(self._mod, QATModule):
  844. unset_module_tracing()
  845. traced_module.with_act = self._mod.with_act
  846. traced_module.with_weight = self._mod.with_weight
  847. if not hasattr(traced_module, "act_fake_quant"):
  848. traced_module.act_fakequant = None
  849. if not hasattr(traced_module, "act_observer"):
  850. traced_module.act_observer = None
  851. if not hasattr(traced_module, "weight_fake_quant"):
  852. traced_module.weight_fakequant = None
  853. if not hasattr(traced_module, "weight_observer"):
  854. traced_module.weight_observer = None
  855. set_module_tracing()
  856. return traced_module
  857. def _record_wrapped_nodes(self, node):
  858. self.nodes.add(node)
  859. def __call__(self, *args, **kwargs):
  860. assert isinstance(self._mod, Module)
  861. # prepare args and kwargs for inner graph
  862. if "method_func" in kwargs:
  863. kwargs.pop("method_func")
  864. def mark_constant(x):
  865. node = NodeMixin.get(x, None)
  866. if node is None: # capture as constant
  867. NodeMixin.wrap(x, lambda: Constant.make(x))
  868. inputs, tree_def = tree_flatten(((self, *args), kwargs))
  869. for i in inputs:
  870. mark_constant(i)
  871. callnode = CallMethod.make(NodeMixin.get(self))
  872. callnode.add_inputs(inputs[1:])
  873. callnode.arg_def = tree_def
  874. if (
  875. self._is_builtin
  876. or tree_def in self._argdef_graph_map
  877. or isinstance(self._mod, TracedModule)
  878. ):
  879. unset_module_tracing()
  880. rst = self._mod(*args, **kwargs)
  881. outputs, out_def = tree_flatten(rst, is_leaf=_is_leaf)
  882. set_module_tracing()
  883. if self._is_builtin:
  884. self._body = None
  885. elif tree_def in self._argdef_graph_map:
  886. self._body = self._argdef_graph_map[tree_def]
  887. else:
  888. self._mod._is_top = False
  889. self._body = self._mod.graph
  890. else:
  891. self_node = None
  892. orig_self = NodeMixin.get(self)
  893. top_graph = active_module_tracer().current_scope()
  894. graph_prefix_name = top_graph._name
  895. if top_graph._prefix_name:
  896. graph_prefix_name = "{}_{}".format(
  897. top_graph._prefix_name, graph_prefix_name.lstrip("_")
  898. )
  899. module_name = orig_self._orig_name
  900. if top_graph._module_name:
  901. module_name = "{}.{}".format(top_graph._module_name, module_name)
  902. self._body = InternalGraph(
  903. orig_self._name, prefix_name=graph_prefix_name, module_name=module_name
  904. )
  905. active_module_tracer().push_scope(self._body)
  906. # rebind self to new input node
  907. if self_node:
  908. NodeMixin.wrap_safe(self, self_node)
  909. active_module_tracer().current_scope()._add_input(self_node)
  910. else:
  911. NodeMixin.wrap_safe(
  912. self,
  913. self_node
  914. if self_node
  915. else Input.make("self", NodeMixin.get_wrapped_type(self), ""),
  916. )
  917. origin_inp_node = [NodeMixin.get(i, None) for i in inputs[1:]]
  918. # prepare args and kwargs for inner graph
  919. index_args, index_kwargs = tree_def.unflatten(
  920. [
  921. ArgsIndex(0),
  922. *list(ArgsIndex(i + 1) for i in range(len(origin_inp_node))),
  923. ]
  924. )
  925. key2idx = getcallargs(type(self._mod).forward, *index_args, **index_kwargs)
  926. idx2key = {}
  927. for k, v in key2idx.items():
  928. if isinstance(v, ArgsIndex):
  929. idx2key[v.index] = k
  930. else:
  931. flatten_argidx, _ = tree_flatten(v)
  932. for _i, v in enumerate(flatten_argidx):
  933. if isinstance(v, ArgsIndex):
  934. idx2key[v.index] = k + "_%d" % _i
  935. def wrap(x, name):
  936. if isinstance(x, (RawTensor, NodeMixin)):
  937. NodeMixin.wrap(
  938. x,
  939. lambda: Input.make(
  940. type=NodeMixin.get_wrapped_type(x), name=name
  941. ),
  942. )
  943. return x
  944. args = [self]
  945. for i, v in enumerate(inputs[1:]):
  946. args.append(wrap(v, idx2key[i + 1]))
  947. args, kwargs = tree_def.unflatten(args)
  948. active_module_tracer().patcher.auto_patch(
  949. getattr(getattr(self._mod, "forward", self._mod), "__globals__", {})
  950. )
  951. rst = type(self._mod).forward(*args, **kwargs)
  952. if _convert_node_flag():
  953. rst = _node_to_tensor(rst)[0][0]
  954. outputs, out_def = tree_flatten(rst, is_leaf=_is_leaf)
  955. for i in (
  956. outputs if isinstance(outputs, collections.abc.Sequence) else (outputs,)
  957. ):
  958. active_module_tracer().current_scope()._add_output(NodeMixin.get(i))
  959. NodeMixin.wrap_safe(self, orig_self)
  960. for arg, node in zip(inputs[1:], origin_inp_node):
  961. if node:
  962. NodeMixin.wrap_safe(arg, node)
  963. active_module_tracer().pop_scope()
  964. # rebind output to outer graph
  965. callnode.out_def = out_def
  966. callnode.add_outputs(outputs)
  967. self._argdef_graph_map[callnode.arg_def] = self._body
  968. self._argdef_outdef_map[callnode.arg_def] = out_def
  969. return rst
  970. def __setattr__(self, name, value):
  971. object.__setattr__(self, name, value)
  972. def __repr__(self):
  973. return repr(self._mod)
  974. def __getattr__(self, name):
  975. if name not in self._mod.__dict__:
  976. attr = getattr(type(self._mod), name).__get__(self, type(self))
  977. else:
  978. attr = getattr(self._mod, name)
  979. full_name = None
  980. if id(attr) in active_module_tracer().id2name:
  981. full_name = active_module_tracer().id2name[id(attr)]
  982. if isinstance(attr, Module):
  983. attr = TracedModuleBuilder(attr)
  984. if isinstance(attr, (Module, RawTensor)):
  985. setattr(self, name, attr)
  986. active_module_tracer().id2name[id(attr)] = full_name
  987. if full_name:
  988. scope_name = active_module_tracer().current_scope()._module_name
  989. if scope_name:
  990. full_name = full_name[len(scope_name) + 1 :]
  991. else:
  992. full_name = name
  993. else:
  994. full_name = name
  995. NodeMixin.wrap(
  996. attr,
  997. lambda: GetAttr.make(
  998. NodeMixin.get(self),
  999. name,
  1000. type=NodeMixin.get_wrapped_type(attr),
  1001. orig_name=full_name,
  1002. ),
  1003. )
  1004. return attr
  1005. def __getattribute__(self, name):
  1006. if name in TracedModuleBuilder.__builder_attributes__:
  1007. return object.__getattribute__(self, name)
  1008. else:
  1009. wrapped = object.__getattribute__(self, name)
  1010. if name in self._mod.__dict__:
  1011. mod_attr = getattr(self._mod, name)
  1012. if not isinstance(mod_attr, Module) and wrapped is not mod_attr:
  1013. wrapped = mod_attr
  1014. setattr(self, name, wrapped)
  1015. if isinstance(mod_attr, Module):
  1016. assert mod_attr is wrapped._mod
  1017. else:
  1018. assert mod_attr is wrapped
  1019. full_name = None
  1020. if id(mod_attr) in active_module_tracer().id2name:
  1021. full_name = active_module_tracer().id2name[id(mod_attr)]
  1022. scope_name = active_module_tracer().current_scope()._module_name
  1023. if full_name and scope_name:
  1024. full_name = full_name[len(scope_name) + 1 :]
  1025. else:
  1026. full_name = name
  1027. else:
  1028. full_name = name
  1029. # assert not self._is_builtin
  1030. if isinstance(wrapped, (NodeMixin, RawTensor)):
  1031. NodeMixin.wrap(
  1032. wrapped,
  1033. lambda: GetAttr.make(
  1034. NodeMixin.get(self),
  1035. name,
  1036. type=NodeMixin.get_wrapped_type(wrapped),
  1037. orig_name=full_name,
  1038. ),
  1039. )
  1040. return wrapped
  1041. class _expr_iter:
  1042. def __init__(self, graph: InternalGraph, recursive: bool = True):
  1043. self.graph = graph
  1044. self.recursive = recursive
  1045. def __iter__(self):
  1046. for expr in self.graph._exprs:
  1047. if isinstance(expr, CallMethod) and isinstance(expr.inputs[0], ModuleNode):
  1048. yield expr
  1049. if self.recursive and expr.graph is not None:
  1050. yield from expr.graph.exprs(self.recursive)
  1051. else:
  1052. yield expr
  1053. class _node_iter:
  1054. def __init__(self, graph: InternalGraph, recursive: bool = True) -> None:
  1055. nodes = []
  1056. node_ids = set()
  1057. for expr in graph.exprs(recursive):
  1058. for n in expr.inputs + expr.outputs:
  1059. if n._id in node_ids:
  1060. continue
  1061. nodes.append(n)
  1062. node_ids.add(n._id)
  1063. self.nodes = list(sorted(nodes, key=lambda x: x._id))
  1064. def __iter__(self):
  1065. for node in self.nodes:
  1066. yield node
  1067. class BaseFilter:
  1068. def __init__(self, expr_iter: Iterable):
  1069. self._iter = expr_iter
  1070. def __iter__(self):
  1071. return iter(self._iter)
  1072. def as_list(self):
  1073. return list(self)
  1074. def as_dict(self):
  1075. return collections.OrderedDict((i._id, i) for i in self)
  1076. def as_unique(self):
  1077. rst = self.as_list()
  1078. assert len(rst) == 1, "{} elements found".format(len(rst))
  1079. (expr,) = self
  1080. return expr
  1081. def as_count(self):
  1082. return sum(1 for _ in self)
  1083. class ExprFilter(BaseFilter):
  1084. def call_function(self, func):
  1085. return ExprFilterCallFunction(self, func)
  1086. def call_method(self, method):
  1087. return ExprFilterCallMethod(self, method)
  1088. def expr_id(self, expr_id: List[int]):
  1089. return ExprFilterExprId(self, expr_id)
  1090. class NodeFilter(BaseFilter):
  1091. def type(self, owner_type, node_type):
  1092. return NodeFilterType(self, owner_type, node_type)
  1093. def node_id(self, node_id: List[int]):
  1094. return NodeFilterNodeId(self, node_id)
  1095. def name(self, name: str, ignorecase: bool = True):
  1096. return NodeFilterName(self, name, ignorecase)
  1097. class NodeFilterType(NodeFilter):
  1098. def __init__(self, expr_iter, owner_type, node_type):
  1099. super().__init__(expr_iter)
  1100. self.owner_type = owner_type
  1101. self.node_type = node_type
  1102. def __iter__(self):
  1103. for node in self._iter:
  1104. if not isinstance(node, self.node_type):
  1105. continue
  1106. if not hasattr(node, "owner"):
  1107. continue
  1108. if isinstance(node.owner, self.owner_type):
  1109. yield node
  1110. class NodeFilterNodeId(NodeFilter):
  1111. def __init__(self, expr_iter, node_id: List[int]):
  1112. super().__init__(expr_iter)
  1113. if not isinstance(node_id, Sequence):
  1114. node_id = [node_id]
  1115. self.node_id = node_id
  1116. def __iter__(self):
  1117. for node in self._iter:
  1118. if node._id in self.node_id:
  1119. yield node
  1120. class NodeFilterName(NodeFilter):
  1121. _re = None
  1122. def __init__(self, node_iter, pattern, ignorecase):
  1123. super().__init__(node_iter)
  1124. self.pattern = pattern
  1125. self._re = self.make_re(pattern, ignorecase)
  1126. @classmethod
  1127. def make_re(cls, pattern, ignorecase=True):
  1128. assert isinstance(pattern, str), "bad pattern: {!r}".format(pattern)
  1129. assert isinstance(ignorecase, bool)
  1130. flags = 0
  1131. if ignorecase:
  1132. flags |= re.IGNORECASE
  1133. return re.compile(fnmatch.translate(pattern), flags=flags)
  1134. def __iter__(self):
  1135. for i in self._iter:
  1136. graph = i.top_graph
  1137. name = "{}_{}".format(graph._name, i._name.lstrip("_"))
  1138. if graph._prefix_name:
  1139. name = "{}_{}".format(graph._prefix_name, name.lstrip("_"))
  1140. if self.pattern == name or self._re.match(name):
  1141. yield i
  1142. class ExprFilterCallFunction(ExprFilter):
  1143. def __init__(self, expr_iter, func: Callable = None):
  1144. super().__init__(expr_iter)
  1145. self.func = func
  1146. def __iter__(self):
  1147. for expr in self._iter:
  1148. if not isinstance(expr, CallFunction):
  1149. continue
  1150. if self.func is None or expr.func == self.func:
  1151. yield expr
  1152. class ExprFilterCallMethod(ExprFilter):
  1153. def __init__(self, expr_iter, method: str = None):
  1154. super().__init__(expr_iter)
  1155. self.method = method
  1156. def __iter__(self):
  1157. for expr in self._iter:
  1158. if not isinstance(expr, CallMethod):
  1159. continue
  1160. if self.method is None or expr.method == self.method:
  1161. yield expr
  1162. class ExprFilterExprId(ExprFilter):
  1163. def __init__(self, expr_iter, expr_id: List[int]):
  1164. super().__init__(expr_iter)
  1165. if not isinstance(expr_id, Sequence):
  1166. expr_id = [expr_id]
  1167. self.expr_id = expr_id
  1168. def __iter__(self):
  1169. for expr in self._iter:
  1170. if expr._id in self.expr_id:
  1171. yield expr
  1172. class TracedModule(Module):
  1173. """
  1174. `TracedModule` is the Module created by tracing normal module. It owns an argdef to graph(InternalGraph) map. The forward method of `TracedModule` will get a graph from `argdef_graph_map` according to the argdef of input args/kwargs and interpret it.
  1175. """
  1176. # m_node = None # type: ModuleNode
  1177. argdef_graph_map = None
  1178. argdef_outdef_map = None
  1179. def __init__(self, is_top, argdef_graph_map, argdef_outdef_map, is_qat=False):
  1180. super(TracedModule, self).__init__()
  1181. self.argdef_graph_map = argdef_graph_map
  1182. self.argdef_outdef_map = argdef_outdef_map
  1183. self._is_top = is_top
  1184. self.watch_points = []
  1185. self.watch_node_value = {}
  1186. self.end_points = []
  1187. self.is_qat = is_qat
  1188. def forward(self, *args, **kwargs):
  1189. inputs, treedef = tree_flatten(((self, *args), kwargs))
  1190. assert treedef in self.argdef_graph_map
  1191. inputs = filter(
  1192. lambda i: isinstance(i, (Module, TracedModuleBuilder, RawTensor)), inputs
  1193. ) # allow TracedModuleBuilder for retrace.
  1194. outputs = self.argdef_graph_map[treedef].interpret(*inputs)
  1195. if self.watch_points:
  1196. self.watch_node_value = {}
  1197. for n in self.watch_points:
  1198. self.watch_node_value[n] = n.top_graph._rst.pop(n)
  1199. if self.end_points:
  1200. return outputs
  1201. out_def = self.argdef_outdef_map[treedef]
  1202. outputs = out_def.unflatten(outputs)
  1203. return outputs
  1204. def set_watch_points(self, nodes):
  1205. if not isinstance(nodes, Sequence):
  1206. nodes = [nodes]
  1207. self.watch_points = nodes
  1208. for n in nodes:
  1209. n.top_graph._watch_point.append(n)
  1210. def clear_watch_points(self):
  1211. for n in self.watch_points:
  1212. n.top_graph._watch_point = []
  1213. self.watch_points = []
  1214. self.watch_node_value = {}
  1215. def set_end_points(self, nodes):
  1216. if not isinstance(nodes, Sequence):
  1217. nodes = [nodes]
  1218. self.end_points = nodes
  1219. graphs = list(self.argdef_graph_map.values())
  1220. for n in nodes:
  1221. assert n.top_graph in graphs
  1222. n.top_graph._end_point.append(n)
  1223. def clear_end_points(self):
  1224. for n in self.end_points:
  1225. n.top_graph._end_point = []
  1226. self.end_points = []
  1227. @property
  1228. def graph(self) -> InternalGraph:
  1229. if self._is_top:
  1230. self._update_ref()
  1231. assert len(self.argdef_graph_map) == 1
  1232. return list(self.argdef_graph_map.values())[0]
  1233. def _update_ref(self, actual_node_map: Union[Dict] = None, top_graph=None):
  1234. for inp_def, graph in self.argdef_graph_map.items():
  1235. if top_graph is not None:
  1236. graph._top_graph = weakref.ref(top_graph)
  1237. for n in graph._inputs + graph.outputs:
  1238. n._top_graph = weakref.ref(graph)
  1239. graph._inputs[0]._owner = weakref.ref(self)
  1240. for i, n in enumerate(graph._inputs):
  1241. n.actual_node = []
  1242. if actual_node_map is not None and inp_def in actual_node_map.keys():
  1243. n.actual_node = list(list(zip(*(actual_node_map[inp_def])))[i])
  1244. node2obj = {}
  1245. next_actual_node_map = collections.defaultdict(
  1246. lambda: collections.defaultdict(list)
  1247. )
  1248. node2obj[graph._inputs[0]] = self
  1249. for expr in graph._exprs:
  1250. for n in expr.inputs + expr.outputs:
  1251. n._top_graph = weakref.ref(graph)
  1252. expr._top_graph = weakref.ref(graph)
  1253. if isinstance(expr, GetAttr) and isinstance(
  1254. expr.outputs[0], ModuleNode
  1255. ):
  1256. obj = getattr(node2obj[expr.inputs[0]], expr.name)
  1257. expr.outputs[0]._owner = weakref.ref(obj)
  1258. node2obj[expr.outputs[0]] = obj
  1259. if isinstance(expr, Constant) and isinstance(
  1260. expr.outputs[0], ModuleNode
  1261. ):
  1262. obj = expr.value
  1263. expr.outputs[0]._owner = weakref.ref(obj)
  1264. node2obj[expr.outputs[0]] = obj
  1265. if (
  1266. isinstance(expr, CallMethod)
  1267. and expr.method == "__call__"
  1268. and isinstance(expr.inputs[0], ModuleNode)
  1269. ):
  1270. obj = node2obj[expr.inputs[0]]
  1271. if expr.arg_def is not None:
  1272. next_actual_node_map[obj][expr.arg_def].append(expr.inputs)
  1273. for obj in node2obj.values():
  1274. if obj is self:
  1275. continue
  1276. mnode_map = None
  1277. if obj in next_actual_node_map.keys():
  1278. mnode_map = next_actual_node_map[obj]
  1279. if isinstance(obj, TracedModule):
  1280. obj._update_ref(mnode_map, graph)
  1281. def flatten(self):
  1282. """
  1283. Get a new module, which eliminates ``GetAttr`` and has no hierarchy.
  1284. :return: :class:`TracedModule`
  1285. """
  1286. new_module = copy.deepcopy(self)
  1287. assert active_module_tracer() is None
  1288. id2name = _init_id2name(new_module, "self")
  1289. set_active_module_tracer(module_tracer(lambda x: x, {}))
  1290. active_module_tracer().push_scope(new_module.graph)
  1291. def _flatten_subgraph(
  1292. graph: InternalGraph,
  1293. module: Module,
  1294. call=None,
  1295. prefix_name="",
  1296. module_name="",
  1297. ):
  1298. if isinstance(prefix_name, str) and prefix_name and prefix_name[-1] != "_":
  1299. prefix_name += "_"
  1300. if isinstance(module_name, str) and module_name:
  1301. module_name += "."
  1302. if graph is None or module.is_qat:
  1303. assert not isinstance(module, TracedModule) or module.is_qat
  1304. const = Constant(module, id2name[id(module)])
  1305. m_node = call.inputs[0]
  1306. if m_node.top_graph != active_module_tracer().current_scope():
  1307. m_node._name = (
  1308. active_module_tracer()
  1309. .current_scope()
  1310. ._create_unique_name(prefix_name)
  1311. )
  1312. m_node._orig_name = id2name[id(module)][5:]
  1313. const.outputs[0] = m_node
  1314. const.outputs[0].expr = const
  1315. return [const, call]
  1316. if call is not None:
  1317. graph = copy.deepcopy(graph)
  1318. exprs = []
  1319. node2obj = {}
  1320. node2obj[graph._inputs[0]] = module
  1321. if call:
  1322. node2obj[call.inputs[0]] = module
  1323. # replace inputs for submodule's exprx
  1324. if call:
  1325. repl_dict = dict(zip(graph._inputs, call.inputs))
  1326. for ind, out in enumerate(graph.outputs):
  1327. if isinstance(out.expr, Input):
  1328. assert out in repl_dict
  1329. call_out = call.outputs[ind]
  1330. for expr in call.outputs[ind].users:
  1331. for index, inp in enumerate(expr.inputs):
  1332. if inp is call_out:
  1333. expr.inputs[index] = repl_dict[out]
  1334. continue
  1335. repl_dict[out] = call.outputs[ind]
  1336. graph._replace_inputs_outputs(repl_dict, prefix_name, module_name)
  1337. for expr in graph._exprs:
  1338. if isinstance(expr, GetAttr):
  1339. # replace GetAttr with Constant
  1340. if isinstance(expr.outputs[0], TensorNode):
  1341. const = Constant(getattr(node2obj[expr.inputs[0]], expr.name))
  1342. const.outputs = expr.outputs
  1343. const.outputs[0].expr = const
  1344. exprs.append(const)
  1345. elif isinstance(expr.outputs[0], ModuleNode):
  1346. node2obj[expr.outputs[0]] = getattr(
  1347. node2obj[expr.inputs[0]], expr.name
  1348. )
  1349. elif isinstance(expr, CallMethod):
  1350. obj_node = expr.inputs[0]
  1351. if isinstance(obj_node, ModuleNode):
  1352. pre_expr = expr.inputs[0].expr
  1353. if isinstance(pre_expr, GetAttr):
  1354. (obj,) = pre_expr.interpret(node2obj[pre_expr.inputs[0]])
  1355. expr_graph = (
  1356. obj.argdef_graph_map[expr.arg_def]
  1357. if hasattr(obj, "argdef_graph_map")
  1358. else None
  1359. )
  1360. exprs.extend(
  1361. _flatten_subgraph(
  1362. expr_graph,
  1363. obj,
  1364. expr,
  1365. prefix_name + obj_node._name.lstrip("_"),
  1366. module_name + obj_node._orig_name,
  1367. )
  1368. )
  1369. else:
  1370. # module has been replaced.
  1371. assert isinstance(pre_expr, Constant)
  1372. exprs.append(expr)
  1373. else:
  1374. exprs.append(expr)
  1375. else:
  1376. exprs.append(expr)
  1377. if call is not None:
  1378. for i in call.inputs:
  1379. i.users.remove(call)
  1380. return exprs
  1381. new_module.graph._exprs = _flatten_subgraph(new_module.graph, new_module)
  1382. new_module.graph.compile()
  1383. set_active_module_tracer(None)
  1384. for _id, expr in enumerate(new_module.graph._exprs):
  1385. expr._id = _id
  1386. total_node_id = 0
  1387. for i in new_module.graph._inputs:
  1388. i._id = total_node_id
  1389. total_node_id += 1
  1390. for expr in new_module.graph._exprs:
  1391. for o in expr.outputs:
  1392. o._id = total_node_id
  1393. total_node_id += 1
  1394. return new_module
  1395. def __getstate__(self):
  1396. d = self.__dict__
  1397. for k in Module.__dict__:
  1398. d.pop(k, None)
  1399. return d
  1400. def cpp_apply_module_trace(opdef, *args):
  1401. return Apply.apply_module_trace_hook(opdef, *args)
  1402. def register_as_builtin(mod_cls: Type[Module]) -> None:
  1403. """
  1404. Registers class ``mod_cls`` (subclass of megengine.module.Module) as builtin module.
  1405. param mod_cls: the Module class which will be threated as builtin module in tracing
  1406. """
  1407. module_tracer.register_as_builtin(mod_cls)
  1408. def wrap(func: Callable):
  1409. """
  1410. Call this function to register func as a builtin function.
  1411. """
  1412. assert callable(func), "func must be a callable"
  1413. assert hasattr(func, "__code__")
  1414. fn_name = func.__code__.co_name
  1415. currentframe = inspect.currentframe()
  1416. assert currentframe is not None
  1417. f = currentframe.f_back
  1418. assert f is not None
  1419. assert (
  1420. f.f_code.co_name == "<module>"
  1421. ), "wrap must be called at the top level of a module"
  1422. Patcher._builtin_functions.append((f.f_globals, fn_name))
  1423. return func
  1424. def _register_all_builtin_module():
  1425. for sub_mod in [M, M.qat, M.quantized]:
  1426. for m in getmembers(sub_mod):
  1427. if (
  1428. isclass(m[1])
  1429. and issubclass(m[1], M.Module)
  1430. and m[1] is not M.Sequential
  1431. and m[1] is not M.ModuleList
  1432. ):
  1433. module_tracer.register_as_builtin(m[1])
  1434. module_tracer.register_as_builtin(Observer)
  1435. module_tracer.register_as_builtin(MinMaxObserver)
  1436. module_tracer.register_as_builtin(SyncMinMaxObserver)
  1437. module_tracer.register_as_builtin(ExponentialMovingAverageObserver)
  1438. module_tracer.register_as_builtin(SyncExponentialMovingAverageObserver)
  1439. module_tracer.register_as_builtin(HistogramObserver)
  1440. module_tracer.register_as_builtin(PassiveObserver)
  1441. module_tracer.register_as_builtin(LSQ)
  1442. module_tracer.register_as_builtin(TQT)
  1443. module_tracer.register_as_builtin(FakeQuantize)
  1444. module_tracer.register_as_builtin(TM_FakeQuant)
  1445. def trace_module(mod: Module, *args: Tensor, **kwargs: Tensor) -> TracedModule:
  1446. """
  1447. Traces module ``mod`` and returns corresponding TracedModule.
  1448. param mod: the module will be converted to TracedModule
  1449. param input: the positional arguments passed to forward method of ``mod``
  1450. param kwargs: the keyword arguments passed to forward method of ``mod``
  1451. """
  1452. assert active_module_tracer() is None
  1453. assert isinstance(mod, Module)
  1454. try:
  1455. use_sym_shape = set_symbolic_shape(True)
  1456. set_module_tracing()
  1457. set_active_module_tracer(
  1458. module_tracer(_wrapped_function, _init_id2name(mod, "self"))
  1459. )
  1460. with active_module_tracer().patcher:
  1461. global_scope = InternalGraph(name="")
  1462. active_module_tracer().push_scope(global_scope)
  1463. builder = TracedModuleBuilder(mod, True)
  1464. name = mod._name if mod._name else mod.__class__.__name__
  1465. NodeMixin.wrap_safe(builder, Input.make(name, ModuleNode, orig_name="self"))
  1466. inputs, _ = tree_flatten((args, kwargs))
  1467. for _, i in enumerate(inputs):
  1468. # assert isinstance(i, Tensor), "not support "
  1469. if isinstance(i, RawTensor):
  1470. NodeMixin.wrap_safe(
  1471. i, Input.make("arg_{}".format(_), NodeMixin.get_wrapped_type(i))
  1472. )
  1473. builder(*args, **kwargs)
  1474. active_module_tracer().pop_scope()
  1475. return builder.build()
  1476. finally:
  1477. set_symbolic_shape(use_sym_shape)
  1478. set_active_module_tracer(None)
  1479. unset_module_tracing()

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台