You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

opr_impl.cpp 19 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439
  1. /**
  2. * \file dnn/src/cuda/convolution/opr_impl.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "src/cuda/convolution/opr_impl.h"
  12. #include "megdnn/dtype.h"
  13. #include "src/cuda/convolution/helper.h"
  14. #include "src/cuda/convolution/backward_data/algo.h"
  15. #include "src/cuda/convolution/backward_filter/algo.h"
  16. #include "src/cuda/conv_bias/opr_impl.h"
  17. #include "src/cuda/utils.h"
  18. using namespace megdnn;
  19. using namespace cuda;
  20. using namespace convolution;
  21. #define TO_STRING2(v) #v
  22. #define TO_STRING(v) TO_STRING2(v)
  23. #define CUDNN_VERSION_STR TO_STRING(CUDNN_MAJOR) "." \
  24. TO_STRING(CUDNN_MINOR) "." TO_STRING(CUDNN_PATCHLEVEL)
  25. /* ============== ConvolutionForwardImpl ============== */
  26. ConvolutionForwardImpl::ConvBiasExtraData
  27. ConvolutionForwardImpl::conv_bias_extra_data(const TensorLayout& src,
  28. const TensorLayout& filter,
  29. const TensorLayout& dst) {
  30. auto conv_param = param();
  31. DType bias_type;
  32. if (src.dtype.enumv() == DTypeEnum::QuantizedS8) {
  33. bias_type = dtype::QuantizedS32(
  34. src.dtype.param<dtype::QuantizedS8>().scale *
  35. filter.dtype.param<dtype::QuantizedS8>().scale);
  36. } else if (src.dtype.enumv() == DTypeEnum::Quantized8Asymm) {
  37. bias_type = dtype::QuantizedS32(
  38. src.dtype.param<dtype::Quantized8Asymm>().scale *
  39. filter.dtype.param<dtype::Quantized8Asymm>().scale);
  40. } else if (src.dtype.enumv() == DTypeEnum::Uint8 ||
  41. src.dtype.enumv() == DTypeEnum::Int8) {
  42. bias_type = dtype::Int32{};
  43. } else if (src.dtype.enumv() == DTypeEnum::Quantized4Asymm) {
  44. bias_type = dtype::QuantizedS32(
  45. src.dtype.param<dtype::Quantized4Asymm>().scale *
  46. filter.dtype.param<dtype::Quantized4Asymm>().scale);
  47. } else {
  48. megdnn_assert(src.dtype.category() == DTypeCategory::FLOAT);
  49. bias_type = src.dtype;
  50. }
  51. ConvBiasExtraData ret = {this->handle()->create_operator<ConvBiasForward>(),
  52. TensorLayout(bias_type), TensorLayout(dst.dtype)};
  53. ret.convbias_opr->param() = {param::ConvBias::NonlineMode::IDENTITY,
  54. conv_param.mode,
  55. conv_param.sparse,
  56. conv_param.format,
  57. conv_param.pad_h,
  58. conv_param.pad_w,
  59. conv_param.stride_h,
  60. conv_param.stride_w,
  61. conv_param.dilate_h,
  62. conv_param.dilate_w,
  63. 0,
  64. conv_param.compute_mode};
  65. ret.convbias_opr->execution_policy() = {this->execution_policy().algorithm};
  66. return ret;
  67. }
  68. ConvolutionForwardImpl::Algorithm*
  69. ConvolutionForwardImpl::get_algorithm_heuristic(const TensorLayout& src,
  70. const TensorLayout& filter,
  71. const TensorLayout& dst,
  72. size_t workspace_limit_in_bytes,
  73. bool reproducible) {
  74. auto extra_data = conv_bias_extra_data(src, filter, dst);
  75. return static_cast<ConvBiasForwardImpl*>(extra_data.convbias_opr.get())
  76. ->get_algorithm_heuristic(src, filter, extra_data.bias_layout,
  77. extra_data.z_layout, dst,
  78. workspace_limit_in_bytes, reproducible);
  79. }
  80. std::vector<ConvolutionForwardImpl::Algorithm*>
  81. ConvolutionForwardImpl::get_all_algorithms(const TensorLayout& src,
  82. const TensorLayout& filter,
  83. const TensorLayout& dst) {
  84. auto extra_data = conv_bias_extra_data(src, filter, dst);
  85. return static_cast<ConvBiasForwardImpl*>(extra_data.convbias_opr.get())
  86. ->get_all_algorithms(src, filter, extra_data.bias_layout,
  87. extra_data.z_layout, dst);
  88. }
  89. size_t ConvolutionForwardImpl::get_workspace_in_bytes(
  90. const TensorLayout& src, const TensorLayout& filter,
  91. const TensorLayout& dst,
  92. const PreprocessedFilter* preprocessed_filter) {
  93. auto extra_data = conv_bias_extra_data(src, filter, dst);
  94. return static_cast<ConvBiasForwardImpl*>(extra_data.convbias_opr.get())
  95. ->get_workspace_in_bytes(
  96. src, filter, extra_data.bias_layout, extra_data.z_layout,
  97. dst,
  98. reinterpret_cast<const ConvolutionBase<
  99. param::ConvBias>::PreprocessedFilter*>(
  100. preprocessed_filter));
  101. }
  102. void ConvolutionForwardImpl::exec(_megdnn_tensor_in src,
  103. _megdnn_tensor_in filter,
  104. _megdnn_tensor_out dst,
  105. const PreprocessedFilter* preprocessed_filter,
  106. _megdnn_workspace workspace) {
  107. auto extra_data =
  108. conv_bias_extra_data(src.layout, filter.layout, dst.layout);
  109. TensorND bias(nullptr, extra_data.bias_layout);
  110. TensorND z(nullptr, extra_data.z_layout);
  111. return static_cast<ConvBiasForwardImpl*>(extra_data.convbias_opr.get())
  112. ->exec(src, filter, bias, z, dst,
  113. reinterpret_cast<const ConvolutionBase<
  114. param::ConvBias>::PreprocessedFilter*>(
  115. preprocessed_filter),
  116. workspace);
  117. }
  118. const char* ConvolutionForwardImpl::get_algorithm_set_name() const {
  119. return "CUDACONV0+CUDNN" CUDNN_VERSION_STR;
  120. }
  121. /* ============== ConvolutionBackwardDataImpl ============== */
  122. void ConvolutionBackwardDataImpl::exec(_megdnn_tensor_in filter,
  123. _megdnn_tensor_in diff,
  124. _megdnn_tensor_out grad,
  125. _megdnn_workspace workspace) {
  126. AlgoBase::ExecArgs args(this, filter, diff, grad, workspace);
  127. auto algo = get_algorithm(this, filter.layout, args.filter_meta,
  128. diff.layout, grad.layout);
  129. algo->check_workspace(args, workspace).exec(args);
  130. }
  131. std::vector<ConvolutionBackwardDataImpl::Algorithm *>
  132. ConvolutionBackwardDataImpl::get_all_algorithms(const TensorLayout &filter,
  133. const TensorLayout &diff,
  134. const TensorLayout &grad) {
  135. return megdnn::get_all_algorithms<ConvolutionBackwardDataImpl>(
  136. {this, filter, diff, grad});
  137. }
  138. ConvolutionBackwardDataImpl::Algorithm*
  139. ConvolutionBackwardDataImpl::get_algorithm_heuristic(
  140. const TensorLayout& filter, const TensorLayout& diff,
  141. const TensorLayout& grad, size_t workspace_limit_in_bytes,
  142. bool reproducible) {
  143. auto fm = check_layout_fwd(grad, filter, diff);
  144. return get_algorithm_heuristic(filter, fm, diff, grad,
  145. workspace_limit_in_bytes, reproducible);
  146. }
  147. ConvolutionBackwardDataImpl::Algorithm*
  148. ConvolutionBackwardDataImpl::get_algorithm_heuristic(const TensorLayout& filter,
  149. const CanonizedFilterMeta& filter_meta, const TensorLayout& diff,
  150. const TensorLayout& grad, size_t workspace_limit_in_bytes,
  151. bool reproducible) {
  152. AlgoBase::SizeArgs args(this, filter, filter_meta, diff, grad);
  153. if (args.filter_meta.group > 1 &&
  154. sm_algo_pack.chanwise.is_available_reproducible(
  155. args, reproducible, workspace_limit_in_bytes)) {
  156. // prefer special chanwise impl
  157. return &sm_algo_pack.chanwise;
  158. }
  159. auto get_cudnn_algo =
  160. [this, &args, workspace_limit_in_bytes,
  161. reproducible]() -> ConvolutionBackwardDataImpl::AlgoBase* {
  162. auto cudnn_handle = cuda::cudnn_handle(this->handle());
  163. CUDNNBwdDataDescs desc;
  164. args.init_desc(desc);
  165. //disable, segfault in megbrain, need further investigate.
  166. #if 0
  167. bool is_heuristic_success= convolution::
  168. PerformanceModelBackwardData::get_algo_backward_data_success(
  169. args, desc, workspace_limit_in_bytes, &algo);
  170. if (is_heuristic_success) {
  171. return sm_algo_pack.cudnn_from_enum(algo);
  172. }
  173. #endif
  174. #if CUDNN_MAJOR >= 7
  175. int max_count = 0;
  176. cudnn_check(cudnnGetConvolutionBackwardDataAlgorithmMaxCount(
  177. cudnn_handle, &max_count));
  178. SmallVector<cudnnConvolutionBwdDataAlgoPerf_t> algo_perf(max_count);
  179. int ret_count = 0;
  180. cudnn_check(cudnnGetConvolutionBackwardDataAlgorithm_v7(
  181. cudnn_handle, desc.filter_desc.desc, desc.diff_desc.desc,
  182. desc.conv_desc.desc, desc.grad_desc.desc, max_count, &ret_count,
  183. algo_perf.data()));
  184. for (int i = 0; i < ret_count; ++i) {
  185. if (algo_perf[i].memory > workspace_limit_in_bytes)
  186. continue;
  187. if (reproducible) {
  188. if (algo_perf[i].determinism == CUDNN_DETERMINISTIC) {
  189. return reinterpret_cast<AlgoBase*>(
  190. sm_algo_pack.cudnn_from_enum(algo_perf[i].algo));
  191. }
  192. } else {
  193. return reinterpret_cast<AlgoBase*>(
  194. sm_algo_pack.cudnn_from_enum(algo_perf[i].algo));
  195. }
  196. }
  197. return nullptr;
  198. #else
  199. cudnnConvolutionBwdDataAlgo_t algo;
  200. cudnn_check(cudnnGetConvolutionBackwardDataAlgorithm(
  201. cudnn_handle, desc.filter_desc.desc, desc.diff_desc.desc,
  202. desc.conv_desc.desc, desc.grad_desc.desc,
  203. CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
  204. workspace_limit_in_bytes, &algo));
  205. auto&& cast_algo =
  206. reinterpret_cast<AlgoBase*>(sm_algo_pack.cudnn_from_enum(algo));
  207. return reinterpret_cast<AlgoBase*>(
  208. megdnn::get_reproducible_algo<ConvolutionBackwardDataImpl>(
  209. cast_algo, reproducible));
  210. #endif
  211. };
  212. if (is_cudnn_supported(args.as_fwd_args())) {
  213. if (auto algo = get_cudnn_algo())
  214. return algo;
  215. }
  216. if (args.filter_meta.group > 1) {
  217. auto orig_args = args;
  218. TensorLayout a, b;
  219. AlgoGroupConvGeneral::modify_size_args(args, a, b);
  220. if (is_cudnn_supported(args.as_fwd_args())) {
  221. if (auto algo = get_cudnn_algo())
  222. return sm_algo_pack.algo2gconv.at(algo);
  223. }
  224. args = orig_args;
  225. }
  226. if (args.filter_layout->dtype.enumv() !=
  227. DTypeTrait<dtype::BFloat16>::enumv) {
  228. if (reproducible) {
  229. return megdnn::get_reproducible_algo<ConvolutionBackwardDataImpl>(
  230. sm_algo_pack.non_cudnn_algos, args,
  231. workspace_limit_in_bytes, "cuda conv bwd_data");
  232. } else {
  233. return megdnn::get_usable_algo<ConvolutionBackwardDataImpl>(
  234. sm_algo_pack.non_cudnn_algos, args,
  235. workspace_limit_in_bytes, "cuda conv bwd_data");
  236. }
  237. } else {
  238. if (reproducible) {
  239. return megdnn::get_reproducible_algo<ConvolutionBackwardDataImpl>(
  240. sm_algo_pack.bfloat16_algos, args, workspace_limit_in_bytes,
  241. "cuda conv bwd_data");
  242. } else {
  243. return megdnn::get_usable_algo<ConvolutionBackwardDataImpl>(
  244. sm_algo_pack.bfloat16_algos, args, workspace_limit_in_bytes,
  245. "cuda conv bwd_data");
  246. }
  247. }
  248. }
  249. size_t ConvolutionBackwardDataImpl::get_workspace_in_bytes(
  250. const TensorLayout &filter,
  251. const TensorLayout &diff,
  252. const TensorLayout &grad) {
  253. AlgoBase::SizeArgs args(this, filter, diff, grad);
  254. return get_algorithm(this, filter, args.filter_meta, diff, grad)->
  255. get_workspace_in_bytes(args);
  256. }
  257. const char* ConvolutionBackwardDataImpl::get_algorithm_set_name() const {
  258. return "CUDACONV0+CUDNN" CUDNN_VERSION_STR;
  259. }
  260. /* ============== ConvolutionBackwardFilterImpl ============== */
  261. void ConvolutionBackwardFilterImpl::exec(_megdnn_tensor_in src,
  262. _megdnn_tensor_in diff,
  263. _megdnn_tensor_out grad,
  264. _megdnn_workspace workspace) {
  265. AlgoBase::ExecArgs args(this, src, diff, grad, workspace);
  266. auto algo = get_algorithm(this, src.layout, diff.layout,
  267. grad.layout, args.grad_filter_meta);
  268. algo->check_workspace(args, workspace).exec(args);
  269. }
  270. std::vector<ConvolutionBackwardFilterImpl::Algorithm *>
  271. ConvolutionBackwardFilterImpl::get_all_algorithms(const TensorLayout &src,
  272. const TensorLayout &diff,
  273. const TensorLayout &grad) {
  274. return megdnn::get_all_algorithms<ConvolutionBackwardFilterImpl>(
  275. {this, src, diff, grad});
  276. }
  277. ConvolutionBackwardFilterImpl::Algorithm*
  278. ConvolutionBackwardFilterImpl::get_algorithm_heuristic(
  279. const TensorLayout& src, const TensorLayout& diff,
  280. const TensorLayout& grad, size_t workspace_limit_in_bytes,
  281. bool reproducible) {
  282. auto fm = check_layout_fwd(src, grad, diff);
  283. return get_algorithm_heuristic(src, diff, grad, fm,
  284. workspace_limit_in_bytes, reproducible);
  285. }
  286. ConvolutionBackwardFilterImpl::Algorithm*
  287. ConvolutionBackwardFilterImpl::get_algorithm_heuristic(
  288. const TensorLayout& src, const TensorLayout& diff,
  289. const TensorLayout& grad, const CanonizedFilterMeta& grad_meta,
  290. size_t workspace_limit_in_bytes, bool reproducible) {
  291. AlgoBase::SizeArgs args(this, src, diff, grad, grad_meta);
  292. if (args.grad_filter_meta.group > 1 &&
  293. sm_algo_pack.chanwise.is_available_reproducible(
  294. args, reproducible, workspace_limit_in_bytes)) {
  295. // prefer special chanwise impl
  296. return &sm_algo_pack.chanwise;
  297. }
  298. auto get_cudnn_algo =
  299. [this, &args, workspace_limit_in_bytes,
  300. reproducible]() -> ConvolutionBackwardFilterImpl::AlgoBase* {
  301. auto cudnn_handle = cuda::cudnn_handle(this->handle());
  302. CUDNNBwdFilterDescs desc;
  303. args.init_desc(desc);
  304. //disable, segfault in megbrain, need further investigate.
  305. #if 0
  306. auto is_heuristic_success =
  307. convolution::PerformanceModelBackwardFilter::
  308. get_algo_backward_filter_success(
  309. args, desc, workspace_limit_in_bytes, &algo);
  310. if (is_heuristic_success) {
  311. return sm_algo_pack.cudnn_from_enum(algo);
  312. }
  313. #endif
  314. #if CUDNN_MAJOR >= 7
  315. int max_count = 0;
  316. cudnn_check(cudnnGetConvolutionBackwardFilterAlgorithmMaxCount(
  317. cudnn_handle, &max_count));
  318. SmallVector<cudnnConvolutionBwdFilterAlgoPerf_t> algo_perf(max_count);
  319. int ret_count = 0;
  320. cudnn_check(cudnnGetConvolutionBackwardFilterAlgorithm_v7(
  321. cudnn_handle, desc.src_desc.desc, desc.diff_desc.desc,
  322. desc.conv_desc.desc, desc.grad_desc.desc, max_count, &ret_count,
  323. algo_perf.data()));
  324. for (int i = 0; i < ret_count; ++i) {
  325. if (algo_perf[i].memory > workspace_limit_in_bytes)
  326. continue;
  327. if (reproducible) {
  328. if (algo_perf[i].determinism == CUDNN_DETERMINISTIC) {
  329. return reinterpret_cast<AlgoBase*>(
  330. sm_algo_pack.cudnn_from_enum(algo_perf[i].algo));
  331. }
  332. } else {
  333. return reinterpret_cast<AlgoBase*>(
  334. sm_algo_pack.cudnn_from_enum(algo_perf[i].algo));
  335. }
  336. }
  337. return nullptr;
  338. #else
  339. cudnnConvolutionBwdFilterAlgo_t algo;
  340. cudnn_check(cudnnGetConvolutionBackwardFilterAlgorithm(
  341. cudnn_handle, desc.src_desc.desc, desc.diff_desc.desc,
  342. desc.conv_desc.desc, desc.grad_desc.desc,
  343. CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
  344. workspace_limit_in_bytes, &algo));
  345. auto&& cast_algo =
  346. reinterpret_cast<AlgoBase*>(sm_algo_pack.cudnn_from_enum(algo));
  347. return reinterpret_cast<AlgoBase*>(
  348. megdnn::get_reproducible_algo<ConvolutionBackwardFilterImpl>(
  349. cast_algo, reproducible));
  350. #endif
  351. };
  352. if (is_cudnn_supported(args.as_fwd_args())) {
  353. if (auto algo = get_cudnn_algo())
  354. return algo;
  355. }
  356. if (args.grad_filter_meta.group > 1) {
  357. auto orig_args = args;
  358. TensorLayout a, b;
  359. AlgoGroupConvGeneral::modify_size_args(args, a, b);
  360. if (is_cudnn_supported(args.as_fwd_args())) {
  361. if (auto algo = get_cudnn_algo())
  362. return sm_algo_pack.algo2gconv.at(algo);
  363. }
  364. args = orig_args;
  365. }
  366. if (args.src_layout->dtype.enumv() != DTypeTrait<dtype::BFloat16>::enumv) {
  367. if (reproducible) {
  368. return megdnn::get_reproducible_algo<ConvolutionBackwardFilterImpl>(
  369. sm_algo_pack.non_cudnn_algos, args,
  370. workspace_limit_in_bytes, "cuda conv bwd_filter");
  371. } else {
  372. return megdnn::get_usable_algo<ConvolutionBackwardFilterImpl>(
  373. sm_algo_pack.non_cudnn_algos, args,
  374. workspace_limit_in_bytes, "cuda conv bwd_filter");
  375. }
  376. } else {
  377. if (reproducible) {
  378. return megdnn::get_reproducible_algo<ConvolutionBackwardFilterImpl>(
  379. sm_algo_pack.bfloat16_algos, args, workspace_limit_in_bytes,
  380. "cuda conv bwd_filter");
  381. } else {
  382. return megdnn::get_usable_algo<ConvolutionBackwardFilterImpl>(
  383. sm_algo_pack.bfloat16_algos, args, workspace_limit_in_bytes,
  384. "cuda conv bwd_filter");
  385. }
  386. }
  387. }
  388. size_t ConvolutionBackwardFilterImpl::get_workspace_in_bytes(
  389. const TensorLayout &src,
  390. const TensorLayout &diff,
  391. const TensorLayout &grad) {
  392. AlgoBase::SizeArgs args(this, src, diff, grad);
  393. return get_algorithm(this, src, diff, grad, args.grad_filter_meta)->
  394. get_workspace_in_bytes(args);
  395. }
  396. const char* ConvolutionBackwardFilterImpl::get_algorithm_set_name() const {
  397. return "CUDACONV0+CUDNN" CUDNN_VERSION_STR;
  398. }
  399. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台