You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

parampack.py 4.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import collections
  10. from typing import Iterable, Optional
  11. import numpy as np
  12. from ..core import Parameter, Tensor
  13. from .module import Module
  14. from .._internal.opr import param_pack_split
  15. class ParamPack(Module):
  16. def __init__(self,
  17. model: Module,
  18. nr_ignore_first:int = 8,
  19. max_size_per_group: int = 10,
  20. max_nr_params_per_group: int = 100):
  21. super().__init__()
  22. self._model = model
  23. self._nr_ignore_first = nr_ignore_first
  24. self._max_size_per_group = max_size_per_group
  25. self._max_nr_params_per_group = max_nr_params_per_group
  26. self._grouped_params = []
  27. self._packed_params = []
  28. params = model.parameters()
  29. self._pack_params(params)
  30. def parameters(self, requires_grad: Optional[bool] = None) -> Iterable[Parameter]:
  31. for param in self._packed_params:
  32. if requires_grad is None or param.requires_grad == requires_grad:
  33. yield param
  34. def _pack_params(self, params: Iterable[Parameter]):
  35. groups = collections.defaultdict(list)
  36. ignored = 0
  37. param_id = 0
  38. for param in params:
  39. if self._nr_ignore_first > ignored:
  40. ignored += 1
  41. self._grouped_params.append([{'tensor': param, 'id': param_id}])
  42. self._packed_params.append(param)
  43. else:
  44. key = (param.dtype, param.device, param.requires_grad)
  45. groups[key].append({'tensor': param, 'id': param_id})
  46. param_id += 1
  47. for (dtype, device, requires_grad) in groups.keys():
  48. dtype_sz = np.dtype(dtype).itemsize
  49. align = device.mem_align
  50. if align < dtype_sz:
  51. align = 1
  52. else:
  53. assert align % dtype_sz == 0
  54. align //= dtype_sz
  55. group = groups[(dtype, device, requires_grad)]
  56. while group:
  57. aligned_pos = []
  58. offset = 0
  59. params = []
  60. idx = 0
  61. while idx < len(group):
  62. param = group[idx]
  63. assert param['tensor'].device == device
  64. padding = (align - (offset & (align - 1))) & (align - 1)
  65. offset += padding
  66. aligned_pos.append(offset)
  67. params.append(param)
  68. offset += int(np.prod(param['tensor'].shape))
  69. idx += 1
  70. if (offset * dtype_sz >=
  71. self._max_size_per_group * 1024 * 1024
  72. or idx >= self._max_nr_params_per_group):
  73. break
  74. group = group[idx:]
  75. if idx == 1:
  76. # ignore param packs with only one item
  77. self._packed_params.append(params[0])
  78. self._grouped_params.append(params)
  79. continue
  80. packed_value = np.zeros((offset, ), dtype=dtype)
  81. for param, pos in zip(params, aligned_pos):
  82. val = param['tensor'].numpy()
  83. packed_value[pos:pos + val.size] = val.flatten()
  84. new_param = Parameter(value=packed_value,
  85. device=device,
  86. dtype=dtype,
  87. requires_grad=requires_grad)
  88. self._packed_params.append(new_param)
  89. self._grouped_params.append(params)
  90. def forward(self, *args, **kwargs):
  91. replace_param = dict()
  92. for i in range(len(self._packed_params)):
  93. packed_param = self._packed_params[i]
  94. grouped_params = self._grouped_params[i]
  95. if len(grouped_params) == 1:
  96. continue
  97. split = param_pack_split(packed_param._symvar,
  98. [i['tensor'].shape for i in grouped_params])
  99. split = [
  100. Parameter(Tensor(i, requires_grad=packed_param.requires_grad))
  101. for i in split
  102. ]
  103. for j in range(len(split)):
  104. replace_param[grouped_params[j]['id']] = split[j]
  105. self._model.replace_param(replace_param, 0)
  106. return self._model.forward(*args, **kwargs)

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台

Contributors (1)