You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

resnet50_perf.py 6.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import argparse
  10. import json
  11. import os
  12. import subprocess
  13. import sys
  14. import time
  15. import numpy as np
  16. from resnet50 import Resnet50
  17. import megengine as mge
  18. import megengine.distributed as dist
  19. import megengine.functional as F
  20. from megengine._internal.plugin import CompGraphProfiler
  21. from megengine.core import Graph, tensor
  22. from megengine.core.graph import get_default_graph
  23. from megengine.functional.debug_param import (
  24. get_conv_execution_strategy,
  25. set_conv_execution_strategy,
  26. )
  27. from megengine.jit import trace
  28. from megengine.module import BatchNorm2d, Conv2d, Linear, MaxPool2d, Module
  29. from megengine.optimizer import SGD
  30. sys.path.append(os.path.join(os.path.dirname(__file__), "..", "..", "..", "examples"))
  31. def init_profiler(comp_graph=get_default_graph()):
  32. profiler = CompGraphProfiler(comp_graph)
  33. return profiler
  34. def dump_profiler(profiler, filename):
  35. with open(filename, "w") as fout:
  36. json.dump(profiler.get(), fout, indent=2)
  37. def print_gpu_usage():
  38. stdout = subprocess.getoutput("nvidia-smi")
  39. for line in stdout.split("\n"):
  40. for item in line.split(" "):
  41. if "MiB" in item:
  42. print("Finish with GPU Usage", item)
  43. break
  44. def run_perf(
  45. batch_size=64,
  46. warm_up=True,
  47. dump_prof=None,
  48. opt_level=2,
  49. conv_fastrun=False,
  50. run_step=True,
  51. track_bn_stats=True,
  52. warm_up_iter=20,
  53. run_iter=100,
  54. num_gpu=None,
  55. device=0,
  56. server=None,
  57. port=None,
  58. scale_batch_size=False,
  59. eager=False,
  60. ):
  61. if conv_fastrun:
  62. set_conv_execution_strategy("PROFILE")
  63. if num_gpu:
  64. dist.init_process_group(args.server, args.port, num_gpu, device, device)
  65. if scale_batch_size:
  66. batch_size = batch_size // num_gpu
  67. print("Run with data parallel, batch size = {} per GPU".format(batch_size))
  68. data = tensor(np.random.randn(batch_size, 3, 224, 224).astype("float32"))
  69. label = tensor(np.random.randint(1000, size=[batch_size,], dtype=np.int32))
  70. net = Resnet50(track_bn_stats=track_bn_stats)
  71. opt = SGD(net.parameters(), lr=0.01, momentum=0.9, weight_decay=1e-4)
  72. def train_func(data, label):
  73. logits = net(data)
  74. loss = F.cross_entropy_with_softmax(logits, label)
  75. if num_gpu:
  76. loss = loss / num_gpu
  77. opt.zero_grad()
  78. opt.backward(loss)
  79. return loss
  80. train_func = trace(
  81. train_func,
  82. symbolic=(not eager),
  83. opt_level=opt_level,
  84. profiling=not (dump_prof is None),
  85. )
  86. if warm_up:
  87. print("Warm up ...")
  88. for _ in range(warm_up_iter):
  89. opt.zero_grad()
  90. train_func(data, label)
  91. if run_step:
  92. opt.step()
  93. print_gpu_usage()
  94. print("Running train ...")
  95. start = time.time()
  96. for _ in range(run_iter):
  97. opt.zero_grad()
  98. train_func(data, label)
  99. if run_step:
  100. opt.step()
  101. time_used = time.time() - start
  102. if dump_prof:
  103. with open(dump_prof, "w") as fout:
  104. json.dump(train_func.get_profile(), fout, indent=2)
  105. return time_used / run_iter
  106. def str2bool(v):
  107. if isinstance(v, bool):
  108. return v
  109. if v.lower() in ("yes", "true", "t", "y", "1"):
  110. return True
  111. elif v.lower() in ("no", "false", "f", "n", "0"):
  112. return False
  113. else:
  114. raise argparse.ArgumentTypeError("Boolean value expected.")
  115. if __name__ == "__main__":
  116. parser = argparse.ArgumentParser(
  117. description="Running regression test on Resnet 50",
  118. formatter_class=argparse.ArgumentDefaultsHelpFormatter,
  119. )
  120. parser.add_argument("--batch-size", type=int, default=64, help="batch size ")
  121. parser.add_argument(
  122. "--warm-up", type=str2bool, default=True, help="whether to warm up"
  123. )
  124. parser.add_argument(
  125. "--dump-prof",
  126. type=str,
  127. default=None,
  128. help="pass the json file path to dump the profiling result",
  129. )
  130. parser.add_argument("--opt-level", type=int, default=2, help="graph opt level")
  131. parser.add_argument(
  132. "--conv-fastrun",
  133. type=str2bool,
  134. default=False,
  135. help="whether to use conv fastrun mode",
  136. )
  137. parser.add_argument(
  138. "--run-step",
  139. type=str2bool,
  140. default=True,
  141. help="whether to run optimizer.step()",
  142. )
  143. parser.add_argument(
  144. "--track-bn-stats",
  145. type=str2bool,
  146. default=True,
  147. help="whether to track bn stats",
  148. )
  149. parser.add_argument(
  150. "--warm-up-iter", type=int, default=20, help="number of iters to warm up"
  151. )
  152. parser.add_argument(
  153. "--run-iter", type=int, default=100, help="number of iters to collect wall time"
  154. )
  155. parser.add_argument("--server", default="0.0.0.0")
  156. parser.add_argument("--port", type=int, default=2222)
  157. parser.add_argument(
  158. "--scale-batch-size",
  159. type=str2bool,
  160. default=False,
  161. help="whether to divide batch size by number of GPUs",
  162. )
  163. parser.add_argument(
  164. "--eager", type=str2bool, default=False, help="whether to use eager mode"
  165. )
  166. # Data parallel related
  167. parser.add_argument("--num-gpu", type=int, default=None)
  168. parser.add_argument("--device", type=int, default=0)
  169. args = parser.parse_args()
  170. print(vars(args))
  171. os.environ["MGB_JIT_BACKEND"] = "NVRTC"
  172. t = run_perf(**vars(args))
  173. print("**********************************")
  174. print("Wall time per iter {:.0f} ms".format(t * 1000))
  175. print("**********************************")
  176. get_default_graph().clear_device_memory()

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台

Contributors (1)