You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

pooling.py 3.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. from abc import abstractmethod
  10. from typing import Tuple, Union
  11. from ..functional import avg_pool2d, max_pool2d
  12. from .module import Module
  13. class _PoolNd(Module):
  14. def __init__(
  15. self,
  16. kernel_size: Union[int, Tuple[int, int]],
  17. stride: Union[int, Tuple[int, int]] = None,
  18. padding: Union[int, Tuple[int, int]] = 0,
  19. ):
  20. super(_PoolNd, self).__init__()
  21. self.kernel_size = kernel_size
  22. self.stride = stride or kernel_size
  23. self.padding = padding
  24. @abstractmethod
  25. def forward(self, inp):
  26. pass
  27. class MaxPool2d(_PoolNd):
  28. r"""Applies a 2D max pooling over an input.
  29. For instance, given an input of the size :math:`(N, C, H, W)` and
  30. :attr:`kernel_size` :math:`(kH, kW)`, this layer generates the output of
  31. the size :math:`(N, C, H_{out}, W_{out})` through a process described as:
  32. .. math::
  33. \begin{aligned}
  34. out(N_i, C_j, h, w) ={} & \max_{m=0, \ldots, kH-1} \max_{n=0, \ldots, kW-1}
  35. \text{input}(N_i, C_j, \text{stride[0]} \times h + m,
  36. \text{stride[1]} \times w + n)
  37. \end{aligned}
  38. If :attr:`padding` is non-zero, then the input is implicitly zero-padded on
  39. both sides for :attr:`padding` number of points.
  40. :param kernel_size: the size of the window to take a max over.
  41. :param stride: the stride of the window. Default value is kernel_size.
  42. :param padding: implicit zero padding to be added on both sides.
  43. Examples:
  44. .. testcode::
  45. import numpy as np
  46. import megengine as mge
  47. import megengine.module as M
  48. m = M.MaxPool2d(kernel_size=3, stride=1, padding=0)
  49. inp = mge.tensor(np.arange(0, 16).astype("float32").reshape(1, 1, 4, 4))
  50. oup = m(inp)
  51. print(oup.numpy())
  52. Outputs:
  53. .. testoutput::
  54. [[[[10. 11.]
  55. [14. 15.]]]]
  56. """
  57. def forward(self, inp):
  58. return max_pool2d(inp, self.kernel_size, self.stride, self.padding)
  59. class AvgPool2d(_PoolNd):
  60. r"""Applies a 2D average pooling over an input.
  61. For instance, given an input of the size :math:`(N, C, H, W)` and
  62. :attr:`kernel_size` :math:`(kH, kW)`, this layer generates the output of
  63. the size :math:`(N, C, H_{out}, W_{out})` through a process described as:
  64. .. math::
  65. out(N_i, C_j, h, w) = \frac{1}{kH * kW} \sum_{m=0}^{kH-1} \sum_{n=0}^{kW-1}
  66. input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)
  67. If :attr:`padding` is non-zero, then the input is implicitly zero-padded on
  68. both sides for :attr:`padding` number of points.
  69. :param kernel_size: the size of the window.
  70. :param stride: the stride of the window. Default value is kernel_size。
  71. :param padding: implicit zero padding to be added on both sides.
  72. Examples:
  73. .. testcode::
  74. import numpy as np
  75. import megengine as mge
  76. import megengine.module as M
  77. m = M.AvgPool2d(kernel_size=3, stride=1, padding=0)
  78. inp = mge.tensor(np.arange(0, 16).astype("float32").reshape(1, 1, 4, 4))
  79. oup = m(inp)
  80. print(oup.numpy())
  81. Outputs:
  82. .. testoutput::
  83. [[[[ 5. 6.]
  84. [ 9. 10.]]]]
  85. """
  86. def forward(self, inp):
  87. return avg_pool2d(inp, self.kernel_size, self.stride, self.padding)

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台