You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

pooling.cpp 23 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584
  1. /**
  2. * \file dnn/test/arm_common/pooling.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "megdnn/dtype.h"
  12. #include "megdnn/opr_param_defs.h"
  13. #include "test/arm_common/fixture.h"
  14. #include "test/common/pooling.h"
  15. #include "test/common/checker.h"
  16. #include "test/common/benchmarker.h"
  17. #include "test/common/rng.h"
  18. namespace megdnn {
  19. namespace test {
  20. TEST_F(ARM_COMMON, POOLING)
  21. {
  22. using Param = param::Pooling;
  23. // clang-format off
  24. for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  25. for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  26. for (size_t p: {1, 2})
  27. {
  28. Param param;
  29. param.mode = Param::Mode::MAX;
  30. param.window_h = param.window_w = 3;
  31. param.stride_h = param.stride_w = 2;
  32. param.pad_h = param.pad_w = p;
  33. Checker<Pooling> checker(handle());
  34. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  35. param.mode = Param::Mode::AVERAGE;
  36. param.window_h = param.window_w = 3;
  37. param.stride_h = param.stride_w = 2;
  38. param.pad_h = param.pad_w = p;
  39. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  40. param.mode = Param::Mode::MAX;
  41. param.window_h = param.window_w = 4;
  42. param.stride_h = param.stride_w = 2;
  43. param.pad_h = param.pad_w = p;
  44. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  45. param.mode = Param::Mode::MAX;
  46. param.window_h = param.window_w = 5;
  47. param.stride_h = param.stride_w = 2;
  48. param.pad_h = param.pad_w = p;
  49. if (ih + p * 2 >= 5 && iw + p * 2 >= 5)
  50. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  51. }
  52. // clang-format on
  53. }
  54. TEST_F(ARM_COMMON, POOLING_INT8_W2x2_S2x2)
  55. {
  56. // clang-format off
  57. for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
  58. for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
  59. for (size_t ph: {0, 1})
  60. for (size_t pw: {0, 1})
  61. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  62. {
  63. Checker<Pooling> checker(handle());
  64. checker.set_dtype(0, dtype::Int8());
  65. param::Pooling param;
  66. param.mode = param::Pooling::Mode::MAX;
  67. param.pad_h = ph;
  68. param.pad_w = pw;
  69. param.stride_h = param.stride_w = 2;
  70. param.window_h = param.window_w = 2;
  71. checker.set_param(param).exec(TensorShapeArray{{2, 3, ih, iw}, {}});
  72. }
  73. // clang-format on
  74. }
  75. TEST_F(ARM_COMMON, POOLING_INT8_W3x3_S2x2)
  76. {
  77. // clang-format off
  78. for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
  79. for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
  80. for (size_t ph: {0, 1, 2})
  81. for (size_t pw: {0, 1, 2})
  82. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  83. {
  84. Checker<Pooling> checker(handle());
  85. checker.set_dtype(0, dtype::Int8());
  86. param::Pooling param;
  87. param.mode = param::Pooling::Mode::MAX;
  88. param.pad_h = ph;
  89. param.pad_w = pw;
  90. param.stride_h = param.stride_w = 2;
  91. param.window_h = param.window_w = 3;
  92. checker.set_param(param).exec(TensorShapeArray{{2, 3, ih, iw}, {}});
  93. }
  94. // clang-format on
  95. }
  96. TEST_F(ARM_COMMON, POOLING_MAX_W3x3_S2x2_NCHW44)
  97. {
  98. // clang-format off
  99. for (size_t ih: {3, 5, 10})
  100. for (size_t iw: {3, 5, 7, 9, 15, 20})
  101. for (size_t ph: {0})
  102. for (size_t pw: {0})
  103. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  104. {
  105. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  106. Checker<Pooling> checker(handle());
  107. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  108. checker.set_rng(0,&rng);
  109. param::Pooling param;
  110. param.mode = param::Pooling::Mode::MAX;
  111. param.format = param::Pooling::Format::NCHW44;
  112. param.pad_h = ph;
  113. param.pad_w = pw;
  114. param.stride_h = param.stride_w = 2;
  115. param.window_h = param.window_w = 3;
  116. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  117. }
  118. // clang-format on
  119. }
  120. TEST_F(ARM_COMMON, POOLING_MAX_W3x3_S1x1_NCHW44)
  121. {
  122. // clang-format off
  123. for (size_t ih: {3, 5, 10})
  124. for (size_t iw: {3, 5, 7, 9, 15, 20})
  125. for (size_t ph: {0})
  126. for (size_t pw: {0})
  127. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  128. {
  129. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  130. Checker<Pooling> checker(handle());
  131. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  132. checker.set_rng(0,&rng);
  133. param::Pooling param;
  134. param.mode = param::Pooling::Mode::MAX;
  135. param.format = param::Pooling::Format::NCHW44;
  136. param.pad_h = ph;
  137. param.pad_w = pw;
  138. param.stride_h = param.stride_w = 1;
  139. param.window_h = param.window_w = 3;
  140. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  141. }
  142. // clang-format on
  143. }
  144. TEST_F(ARM_COMMON, POOLING_MAX_W2x2_S1x1_NCHW44)
  145. {
  146. // clang-format off
  147. for (size_t ih: {2, 5, 10, 17})
  148. for (size_t iw: {2, 6, 8, 16, 26})
  149. for (size_t ph: {0})
  150. for (size_t pw: {0})
  151. if (ih+2*ph >= 2 && iw+2*pw >= 2)
  152. {
  153. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  154. Checker<Pooling> checker(handle());
  155. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  156. checker.set_rng(0,&rng);
  157. param::Pooling param;
  158. param.mode = param::Pooling::Mode::MAX;
  159. param.format = param::Pooling::Format::NCHW44;
  160. param.pad_h = ph;
  161. param.pad_w = pw;
  162. param.stride_h = param.stride_w = 1;
  163. param.window_h = param.window_w = 2;
  164. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  165. }
  166. // clang-format on
  167. }
  168. TEST_F(ARM_COMMON, POOLING_MAX_W2x2_S2x2_NCHW44)
  169. {
  170. // clang-format off
  171. for (size_t ih: {2, 5, 10, 17})
  172. for (size_t iw: {2, 6, 8, 16, 26})
  173. for (size_t ph: {0})
  174. for (size_t pw: {0})
  175. if (ih+2*ph >= 2 && iw+2*pw >= 2)
  176. {
  177. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  178. Checker<Pooling> checker(handle());
  179. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  180. checker.set_rng(0,&rng);
  181. param::Pooling param;
  182. param.mode = param::Pooling::Mode::MAX;
  183. param.format = param::Pooling::Format::NCHW44;
  184. param.pad_h = ph;
  185. param.pad_w = pw;
  186. param.stride_h = param.stride_w = 2;
  187. param.window_h = param.window_w = 2;
  188. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  189. }
  190. // clang-format on
  191. }
  192. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  193. TEST_F(ARM_COMMON, POOLING_FP16) {
  194. Checker<Pooling> checker(handle());
  195. checker.set_dtype(0, dtype::Float16{})
  196. .set_dtype(1, dtype::Float16{})
  197. .set_epsilon(3e-3);
  198. using Param = param::Pooling;
  199. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23})
  200. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23})
  201. for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
  202. for (size_t window : {2, 3}) {
  203. Param param;
  204. param.mode = mode;
  205. param.window_h = param.window_w = window;
  206. param.stride_h = param.stride_w = 1;
  207. param.pad_h = param.pad_w = window / 2;
  208. //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 || FH
  209. //! == 3)
  210. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  211. //! test for SH = SW = 2 && FH = FW = 2
  212. param.stride_h = param.stride_w = 2;
  213. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  214. }
  215. }
  216. //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
  217. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  218. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  219. for (size_t ph : {0, 1, 2})
  220. for (size_t pw : {0, 1, 2})
  221. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  222. param::Pooling param;
  223. param.mode = param::Pooling::Mode::MAX;
  224. param.pad_h = ph;
  225. param.pad_w = pw;
  226. param.stride_h = param.stride_w = 2;
  227. param.window_h = param.window_w = 3;
  228. checker.set_param(param).exec(
  229. TensorShapeArray{{2, 3, ih, iw}, {}});
  230. }
  231. //! test for SH == 2 && SW == 2 && FH = FW = 4 max pooling
  232. for (size_t ih :
  233. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  234. for (size_t iw :
  235. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  236. for (size_t p : {1, 2}) {
  237. Param param;
  238. param.mode = Param::Mode::MAX;
  239. param.window_h = param.window_w = 4;
  240. param.stride_h = param.stride_w = 2;
  241. param.pad_h = param.pad_w = p;
  242. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  243. }
  244. //! test for SH == 2 && SW == 2 && FH = FW = 5 max pooling
  245. for (size_t ih :
  246. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  247. for (size_t iw :
  248. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  249. for (size_t p : {1, 2}) {
  250. Param param;
  251. param.mode = Param::Mode::MAX;
  252. param.window_h = param.window_w = 5;
  253. param.stride_h = param.stride_w = 2;
  254. param.pad_h = param.pad_w = p;
  255. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  256. }
  257. }
  258. #endif
  259. TEST_F(ARM_COMMON, POOLING_QUANTIZED) {
  260. Checker<Pooling> checker(handle());
  261. UniformIntRNG rng1{INT8_MIN >> 1, INT8_MAX >> 1};
  262. UniformIntRNG rng2{0, UINT8_MAX >> 1};
  263. using Param = param::Pooling;
  264. for (auto type : std::vector<DType>{
  265. dtype::QuantizedS8(1.1f),
  266. dtype::Quantized8Asymm(1.1f, static_cast<uint8_t>(3))}) {
  267. if (type.enumv() == DTypeEnum::QuantizedS8) {
  268. checker.set_rng(0, &rng1);
  269. } else {
  270. megdnn_assert(type.enumv() == DTypeEnum::Quantized8Asymm);
  271. checker.set_rng(0, &rng2);
  272. }
  273. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
  274. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
  275. for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
  276. for (size_t window : {2, 3}) {
  277. Param param;
  278. param.mode = mode;
  279. param.window_h = param.window_w = window;
  280. param.stride_h = param.stride_w = 1;
  281. param.pad_h = param.pad_w = window / 2;
  282. //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 ||
  283. //! FH
  284. //! == 3)
  285. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  286. //! test for SH = SW = 2 && FH = FW = 2
  287. param.stride_h = param.stride_w = 2;
  288. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  289. }
  290. }
  291. //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
  292. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  293. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  294. for (size_t ph : {0, 1, 2})
  295. for (size_t pw : {0, 1, 2})
  296. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  297. param::Pooling param;
  298. param.mode = param::Pooling::Mode::MAX;
  299. param.pad_h = ph;
  300. param.pad_w = pw;
  301. param.window_h = param.window_w = 3;
  302. param.stride_h = param.stride_w = 2;
  303. checker.set_param(param).exec(
  304. TensorShapeArray{{2, 3, ih, iw}, {}});
  305. }
  306. //! test for SH == 2 && SW == 2 && FH == FW == 4 max pooling
  307. for (size_t ih :
  308. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  309. for (size_t iw :
  310. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  311. for (size_t p : {1, 2}) {
  312. Param param;
  313. param.mode = Param::Mode::MAX;
  314. param.window_h = param.window_w = 4;
  315. param.stride_h = param.stride_w = 2;
  316. param.pad_h = param.pad_w = p;
  317. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  318. }
  319. //! test for SH == 2 && SW == 2 && FH == FW == 5 max pooling
  320. for (size_t ih :
  321. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  322. for (size_t iw :
  323. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  324. for (size_t p : {1, 2}) {
  325. Param param;
  326. param.mode = Param::Mode::MAX;
  327. param.window_h = param.window_w = 5;
  328. param.stride_h = param.stride_w = 2;
  329. param.pad_h = param.pad_w = p;
  330. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  331. }
  332. }
  333. }
  334. #if MEGDNN_WITH_BENCHMARK
  335. TEST_F(ARM_COMMON, BENCHMARK_POOLING_INT8_W3x3_S2x2)
  336. {
  337. using Param = param::Pooling;
  338. auto run = [&](const TensorShapeArray &shapes,
  339. Param param) {
  340. auto handle_naive = create_cpu_handle(2);
  341. TensorLayoutArray layouts;
  342. layouts.emplace_back(shapes[0], dtype::Int8());
  343. layouts.emplace_back(shapes[1], dtype::Int8());
  344. Benchmarker<Pooling> benchmarker_naive(handle_naive.get());
  345. Benchmarker<Pooling> benchmarker_float(handle());
  346. Benchmarker<Pooling> benchmarker_int(handle());
  347. size_t RUN = 10;
  348. auto t1 = benchmarker_naive.set_display(false).set_times(RUN).
  349. set_param(param).exec(shapes);
  350. auto t2 = benchmarker_float.set_display(false).set_times(RUN).
  351. set_param(param).exec(shapes);
  352. auto t3 = benchmarker_int.set_display(false).set_times(RUN).
  353. set_param(param).execl(layouts);
  354. printf("naive=%.3fms float=%.3fms, int=%.3fms\n",
  355. t1 / RUN, t2 / RUN, t3 / RUN);
  356. auto speedup = t2/t3;
  357. ASSERT_GE(speedup, 2.0);
  358. };
  359. Param param;
  360. param.window_h = param.window_w = 3;
  361. param.stride_h = param.stride_w = 2;
  362. param.pad_h = param.pad_w = 1;
  363. std::cout << "3x3 with 2x2 stride max pooling:" << std::endl;
  364. run({{1, 3, 640, 480}, {}}, param);
  365. }
  366. TEST_F(ARM_COMMON, BENCHMARK_POOLING_W4x4_S2x2)
  367. {
  368. using Param = param::Pooling;
  369. auto run = [&](const TensorShapeArray &shapes,
  370. Param param) {
  371. std::cout << "N:" << shapes[0][0] << " "
  372. << "IC:" << shapes[0][1] << " "
  373. << "IH:" << shapes[0][2] << " "
  374. << "IW:" << shapes[0][3] << std::endl;
  375. auto handle_naive = create_cpu_handle(2);
  376. Benchmarker<Pooling> benchmarker_naive(handle_naive.get());
  377. Benchmarker<Pooling> benchmarker_float(handle());
  378. size_t RUN = 10;
  379. auto t1 = benchmarker_naive.set_display(false).set_times(RUN).
  380. set_param(param).exec(shapes);
  381. auto t2 = benchmarker_float.set_display(false).set_times(RUN).
  382. set_param(param).exec(shapes);
  383. TensorLayout dst_layout;
  384. auto opr = handle()->create_operator<Pooling>();
  385. opr->param() = param;
  386. opr->deduce_layout({shapes[0], dtype::Float32()}, dst_layout);
  387. float calc_amount = dst_layout.total_nr_elems() *
  388. param.window_h * param.window_w;
  389. printf("naive={%.3fms, %.3fMflops}, neon={%.3fms, %.3fMflops}\n",
  390. t1 / RUN, calc_amount / (t1 / RUN * 1000),
  391. t2 / RUN, calc_amount / (t2 / RUN * 1000));
  392. };
  393. Param param;
  394. param.window_h = param.window_w = 4;
  395. param.stride_h = param.stride_w = 2;
  396. param.pad_h = param.pad_w = 1;
  397. std::cout << "4x4 with 2x2 stride max pooling:" << std::endl;
  398. run({{1, 24, 160, 128}, {}}, param);
  399. run({{1, 4, 240, 135}, {}}, param);
  400. run({{1, 32, 120, 67}, {}}, param);
  401. run({{1, 64, 60, 33}, {}}, param);
  402. }
  403. TEST_F(ARM_COMMON, BENCHMARK_POOLING_W5x5_S2x2)
  404. {
  405. using Param = param::Pooling;
  406. auto run = [&](const TensorShapeArray &shapes,
  407. Param param) {
  408. std::cout << "N:" << shapes[0][0] << " "
  409. << "IC:" << shapes[0][1] << " "
  410. << "IH:" << shapes[0][2] << " "
  411. << "IW:" << shapes[0][3] << std::endl;
  412. auto handle_naive = create_cpu_handle(2);
  413. Benchmarker<Pooling> benchmarker_naive(handle_naive.get());
  414. Benchmarker<Pooling> benchmarker_float(handle());
  415. size_t RUN = 10;
  416. auto t1 = benchmarker_naive.set_display(false).set_times(RUN).
  417. set_param(param).exec(shapes);
  418. auto t2 = benchmarker_float.set_display(false).set_times(RUN).
  419. set_param(param).exec(shapes);
  420. TensorLayout dst_layout;
  421. auto opr = handle()->create_operator<Pooling>();
  422. opr->param() = param;
  423. opr->deduce_layout({shapes[0], dtype::Float32()}, dst_layout);
  424. float calc_amount = dst_layout.total_nr_elems() *
  425. param.window_h * param.window_w;
  426. printf("naive={%.3fms, %.3fMflops}, neon={%.3fms, %.3fMflops}\n",
  427. t1 / RUN, calc_amount / (t1 / RUN * 1000),
  428. t2 / RUN, calc_amount / (t2 / RUN * 1000));
  429. };
  430. Param param;
  431. param.window_h = param.window_w = 5;
  432. param.stride_h = param.stride_w = 2;
  433. param.pad_h = param.pad_w = 1;
  434. std::cout << "5x5 with 2x2 stride max pooling:" << std::endl;
  435. run({{1, 24, 160, 128}, {}}, param);
  436. run({{1, 4, 240, 135}, {}}, param);
  437. run({{1, 32, 120, 67}, {}}, param);
  438. run({{1, 64, 60, 33}, {}}, param);
  439. }
  440. TEST_F(ARM_COMMON, BENCHMARK_POOLING_FP16) {
  441. using Param = param::Pooling;
  442. auto run = [&](const TensorShapeArray& shapes, Param param) {
  443. TensorLayoutArray layouts;
  444. layouts.emplace_back(shapes[0], dtype::Float16());
  445. layouts.emplace_back(shapes[1], dtype::Float16());
  446. Benchmarker<Pooling> benchmarker_float(handle());
  447. Benchmarker<Pooling> benchmarker_half(handle());
  448. size_t RUN = 10;
  449. auto tf = benchmarker_float.set_display(false)
  450. .set_times(RUN)
  451. .set_param(param)
  452. .exec(shapes) /
  453. RUN;
  454. auto th = benchmarker_half.set_display(false)
  455. .set_times(RUN)
  456. .set_param(param)
  457. .execl(layouts) /
  458. RUN;
  459. TensorLayout dst_layout;
  460. auto opr = handle()->create_operator<Pooling>();
  461. opr->param() = param;
  462. opr->deduce_layout({shapes[0], dtype::Float32()}, dst_layout);
  463. float computations = dst_layout.total_nr_elems() * param.window_h *
  464. param.window_w / (1024.f * 1024 * 1024);
  465. printf("float=%.3fms %f gflops, float16=%.3fms %f gflops speedup: %f\n",
  466. tf, computations / tf * 1e3, th, computations / th * 1e3,
  467. tf / th);
  468. };
  469. Param param;
  470. param.window_h = param.window_w = 2;
  471. param.stride_h = param.stride_w = 1;
  472. param.pad_h = param.pad_w = 1;
  473. printf("2x2 with 1x1 stride max pooling:\n");
  474. run({{1, 3, 640, 480}, {}}, param);
  475. for (size_t oh : {640, 128})
  476. for (size_t ow : {480, 112}) {
  477. param.window_h = param.window_w = 3;
  478. param.stride_h = param.stride_w = 2;
  479. param.pad_h = param.pad_w = 1;
  480. param.mode = Param::Mode::AVERAGE;
  481. printf("3x3 with 2x2 stride average pooling.\n");
  482. run({{1, 3, oh, ow}, {}}, param);
  483. for (size_t pw : {2, 3, 4, 5}) {
  484. param.window_h = param.window_w = pw;
  485. param.stride_h = param.stride_w = 2;
  486. param.pad_h = param.pad_w = 1;
  487. param.mode = Param::Mode::MAX;
  488. printf("%zux%zu with 2x2 stride max pooling:\n", pw, pw);
  489. run({{1, 3, oh, ow}, {}}, param);
  490. }
  491. }
  492. }
  493. TEST_F(ARM_COMMON, BENCHMARK_POOLING_QUANTIZED) {
  494. using Param = param::Pooling;
  495. auto run = [&](const TensorShapeArray& shapes, Param param) {
  496. auto handle_naive = create_cpu_handle(2);
  497. TensorLayoutArray layouts;
  498. layouts.emplace_back(shapes[0], dtype::QuantizedS8(1.1f));
  499. layouts.emplace_back(shapes[1], dtype::QuantizedS8(1.1f));
  500. Benchmarker<Pooling> benchmarker_int(handle());
  501. Benchmarker<Pooling> benchmarker_naive(handle_naive.get());
  502. size_t RUN = 10;
  503. auto time_int = benchmarker_int.set_display(false)
  504. .set_times(RUN)
  505. .set_param(param)
  506. .exec(shapes) /
  507. RUN;
  508. auto time_naive = benchmarker_naive.set_display(false)
  509. .set_times(RUN)
  510. .set_param(param)
  511. .execl(layouts) /
  512. RUN;
  513. TensorLayout dst_layout;
  514. auto opr = handle()->create_operator<Pooling>();
  515. opr->param() = param;
  516. opr->deduce_layout({shapes[0], dtype::QuantizedS8(1.1f)}, dst_layout);
  517. float computations = dst_layout.total_nr_elems() * param.window_h *
  518. param.window_w / (1024.f * 1024 * 1024);
  519. printf("naive=%.3fms %f gflops, int8=%.3fms %f gflops speedup: %f\n",
  520. time_naive, computations / time_naive * 1e3, time_int,
  521. computations / time_int * 1e3, time_naive / time_int);
  522. };
  523. Param param;
  524. param.window_h = param.window_w = 2;
  525. param.stride_h = param.stride_w = 1;
  526. param.pad_h = param.pad_w = 1;
  527. printf("2x2 with 1x1 stride max pooling:\n");
  528. run({{1, 3, 640, 480}, {}}, param);
  529. // clang-format off
  530. for (size_t oh : {640, 128})
  531. for (size_t ow : {480, 112})
  532. for (size_t pw : {2, 3, 4, 5}) {
  533. param.window_h = param.window_w = pw;
  534. param.stride_h = param.stride_w = 2;
  535. param.pad_h = param.pad_w = 1;
  536. printf("%zux%zu with 2x2 stride max pooling:\n", pw, pw);
  537. run({{1, 3, oh, ow}, {}}, param);
  538. }
  539. // clang-format on
  540. }
  541. #endif
  542. } // namespace test
  543. } // namespace megdnn
  544. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台