You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

pooling_multi_thread.cpp 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452
  1. /**
  2. * \file dnn/test/arm_common/pooling_multi_thread.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "test/arm_common/fixture.h"
  12. #include "test/common/pooling.h"
  13. #include "test/common/checker.h"
  14. #include "test/common/benchmarker.h"
  15. #include "test/common/rng.h"
  16. namespace megdnn {
  17. namespace test {
  18. /*********************** mutli threads *********************************/
  19. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING) {
  20. using Param = param::Pooling;
  21. for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  22. for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  23. for (size_t p: {1, 2})
  24. {
  25. Param param;
  26. param.mode = Param::Mode::MAX;
  27. param.window_h = param.window_w = 3;
  28. param.stride_h = param.stride_w = 2;
  29. param.pad_h = param.pad_w = p;
  30. Checker<Pooling> checker(handle());
  31. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  32. param.mode = Param::Mode::AVERAGE;
  33. param.window_h = param.window_w = 3;
  34. param.stride_h = param.stride_w = 2;
  35. param.pad_h = param.pad_w = p;
  36. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  37. param.mode = Param::Mode::MAX;
  38. param.window_h = param.window_w = 4;
  39. param.stride_h = param.stride_w = 2;
  40. param.pad_h = param.pad_w = p;
  41. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  42. param.mode = Param::Mode::MAX;
  43. param.window_h = param.window_w = 5;
  44. param.stride_h = param.stride_w = 2;
  45. param.pad_h = param.pad_w = p;
  46. if (ih + p * 2 >= 5 && iw + p * 2 >= 5)
  47. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  48. }
  49. }
  50. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_MAX_W3x3_S2x2_NCHW44)
  51. {
  52. // clang-format off
  53. for (size_t ih: {3, 5, 10})
  54. for (size_t iw: {3, 5, 7, 9, 15, 20})
  55. for (size_t ph: {0})
  56. for (size_t pw: {0})
  57. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  58. {
  59. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  60. Checker<Pooling> checker(handle());
  61. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  62. checker.set_rng(0,&rng);
  63. param::Pooling param;
  64. param.mode = param::Pooling::Mode::MAX;
  65. param.format = param::Pooling::Format::NCHW44;
  66. param.pad_h = ph;
  67. param.pad_w = pw;
  68. param.stride_h = param.stride_w = 2;
  69. param.window_h = param.window_w = 3;
  70. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  71. }
  72. // clang-format on
  73. }
  74. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_MAX_W3x3_S1x1_NCHW44)
  75. {
  76. // clang-format off
  77. for (size_t ih: {3, 5, 10})
  78. for (size_t iw: {3, 5, 7, 9, 15, 20})
  79. for (size_t ph: {0})
  80. for (size_t pw: {0})
  81. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  82. {
  83. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  84. Checker<Pooling> checker(handle());
  85. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  86. checker.set_rng(0,&rng);
  87. param::Pooling param;
  88. param.mode = param::Pooling::Mode::MAX;
  89. param.format = param::Pooling::Format::NCHW44;
  90. param.pad_h = ph;
  91. param.pad_w = pw;
  92. param.stride_h = param.stride_w = 1;
  93. param.window_h = param.window_w = 3;
  94. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  95. }
  96. // clang-format on
  97. }
  98. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_MAX_W2x2_S1x1_NCHW44)
  99. {
  100. // clang-format off
  101. for (size_t ih: {2, 5, 10, 17})
  102. for (size_t iw: {2, 6, 8, 16, 26})
  103. for (size_t ph: {0})
  104. for (size_t pw: {0})
  105. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  106. {
  107. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  108. Checker<Pooling> checker(handle());
  109. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  110. checker.set_rng(0,&rng);
  111. param::Pooling param;
  112. param.mode = param::Pooling::Mode::MAX;
  113. param.format = param::Pooling::Format::NCHW44;
  114. param.pad_h = ph;
  115. param.pad_w = pw;
  116. param.stride_h = param.stride_w = 1;
  117. param.window_h = param.window_w = 2;
  118. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  119. }
  120. // clang-format on
  121. }
  122. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_MAX_W2x2_S2x2_NCHW44)
  123. {
  124. // clang-format off
  125. for (size_t ih: {2, 5, 10, 17})
  126. for (size_t iw: {2, 6, 8, 16, 26})
  127. for (size_t ph: {0})
  128. for (size_t pw: {0})
  129. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  130. {
  131. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  132. Checker<Pooling> checker(handle());
  133. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  134. checker.set_rng(0,&rng);
  135. param::Pooling param;
  136. param.mode = param::Pooling::Mode::MAX;
  137. param.format = param::Pooling::Format::NCHW44;
  138. param.pad_h = ph;
  139. param.pad_w = pw;
  140. param.stride_h = param.stride_w = 2;
  141. param.window_h = param.window_w = 2;
  142. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  143. }
  144. // clang-format on
  145. }
  146. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_INT8_W3x3_S2x2)
  147. {
  148. for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
  149. for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
  150. for (size_t ph: {0, 1, 2})
  151. for (size_t pw: {0, 1, 2})
  152. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  153. {
  154. Checker<Pooling> checker(handle());
  155. checker.set_dtype(0, dtype::Int8());
  156. param::Pooling param;
  157. param.mode = param::Pooling::Mode::MAX;
  158. param.pad_h = ph;
  159. param.pad_w = pw;
  160. param.stride_h = param.stride_w = 2;
  161. param.window_h = param.window_w = 3;
  162. checker.set_param(param).exec(TensorShapeArray{
  163. {2, 3, ih, iw}, {}});
  164. }
  165. }
  166. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_INT8_W2x2_S2x2)
  167. {
  168. for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
  169. for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
  170. for (size_t ph: {0, 1})
  171. for (size_t pw: {0, 1})
  172. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  173. {
  174. Checker<Pooling> checker(handle());
  175. checker.set_dtype(0, dtype::Int8());
  176. param::Pooling param;
  177. param.mode = param::Pooling::Mode::MAX;
  178. param.pad_h = ph;
  179. param.pad_w = pw;
  180. param.stride_h = param.stride_w = 2;
  181. param.window_h = param.window_w = 2;
  182. checker.set_param(param).exec(TensorShapeArray{
  183. {2, 3, ih, iw}, {}});
  184. }
  185. }
  186. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  187. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_FP16) {
  188. Checker<Pooling> checker(handle());
  189. checker.set_dtype(0, dtype::Float16{})
  190. .set_dtype(1, dtype::Float16{})
  191. .set_epsilon(3e-3);
  192. using Param = param::Pooling;
  193. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23})
  194. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23})
  195. for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
  196. for (size_t window : {2, 3}) {
  197. Param param;
  198. param.mode = mode;
  199. param.window_h = param.window_w = window;
  200. param.stride_h = param.stride_w = 1;
  201. param.pad_h = param.pad_w = window / 2;
  202. //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 || FH
  203. //! == 3)
  204. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  205. //! test for SH = SW = 2 && FH = FW = 2
  206. param.stride_h = param.stride_w = 2;
  207. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  208. }
  209. }
  210. //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
  211. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  212. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  213. for (size_t ph : {0, 1, 2})
  214. for (size_t pw : {0, 1, 2})
  215. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  216. param::Pooling param;
  217. param.mode = param::Pooling::Mode::MAX;
  218. param.pad_h = ph;
  219. param.pad_w = pw;
  220. param.stride_h = param.stride_w = 2;
  221. param.window_h = param.window_w = 3;
  222. checker.set_param(param).exec(
  223. TensorShapeArray{{2, 3, ih, iw}, {}});
  224. }
  225. //! test for SH == 2 && SW == 2 && FH = FW = 4 max pooling
  226. for (size_t ih :
  227. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  228. for (size_t iw :
  229. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  230. for (size_t p : {1, 2}) {
  231. Param param;
  232. param.mode = Param::Mode::MAX;
  233. param.window_h = param.window_w = 4;
  234. param.stride_h = param.stride_w = 2;
  235. param.pad_h = param.pad_w = p;
  236. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  237. }
  238. //! test for SH == 2 && SW == 2 && FH = FW = 5 max pooling
  239. for (size_t ih :
  240. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  241. for (size_t iw :
  242. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  243. for (size_t p : {1, 2}) {
  244. Param param;
  245. param.mode = Param::Mode::MAX;
  246. param.window_h = param.window_w = 5;
  247. param.stride_h = param.stride_w = 2;
  248. param.pad_h = param.pad_w = p;
  249. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  250. }
  251. }
  252. #endif
  253. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_QUANTIZED) {
  254. Checker<Pooling> checker(handle());
  255. UniformIntRNG rng1{INT8_MIN >> 1, INT8_MAX >> 1};
  256. UniformIntRNG rng2{0, UINT8_MAX >> 1};
  257. using Param = param::Pooling;
  258. for (auto type : std::vector<DType>{
  259. dtype::QuantizedS8(1.1f),
  260. dtype::Quantized8Asymm(1.1f, static_cast<uint8_t>(3))}) {
  261. if (type.enumv() == DTypeEnum::QuantizedS8) {
  262. checker.set_rng(0, &rng1);
  263. } else {
  264. megdnn_assert(type.enumv() == DTypeEnum::Quantized8Asymm);
  265. checker.set_rng(0, &rng2);
  266. }
  267. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
  268. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
  269. for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
  270. for (size_t window : {2, 3}) {
  271. Param param;
  272. param.mode = mode;
  273. param.window_h = param.window_w = window;
  274. param.stride_h = param.stride_w = 1;
  275. param.pad_h = param.pad_w = window / 2;
  276. //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 ||
  277. //! FH
  278. //! == 3)
  279. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  280. //! test for SH = SW = 2 && FH = FW = 2
  281. param.stride_h = param.stride_w = 2;
  282. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  283. }
  284. }
  285. //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
  286. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  287. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  288. for (size_t ph : {0, 1, 2})
  289. for (size_t pw : {0, 1, 2})
  290. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  291. param::Pooling param;
  292. param.mode = param::Pooling::Mode::MAX;
  293. param.pad_h = ph;
  294. param.pad_w = pw;
  295. param.window_h = param.window_w = 3;
  296. param.stride_h = param.stride_w = 2;
  297. checker.set_param(param).exec(
  298. TensorShapeArray{{2, 3, ih, iw}, {}});
  299. }
  300. //! test for SH == 2 && SW == 2 && FH == FW == 4 max pooling
  301. for (size_t ih :
  302. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  303. for (size_t iw :
  304. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  305. for (size_t p : {1, 2}) {
  306. Param param;
  307. param.mode = Param::Mode::MAX;
  308. param.window_h = param.window_w = 4;
  309. param.stride_h = param.stride_w = 2;
  310. param.pad_h = param.pad_w = p;
  311. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  312. }
  313. //! test for SH == 2 && SW == 2 && FH == FW == 5 max pooling
  314. for (size_t ih :
  315. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  316. for (size_t iw :
  317. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  318. for (size_t p : {1, 2}) {
  319. Param param;
  320. param.mode = Param::Mode::MAX;
  321. param.window_h = param.window_w = 5;
  322. param.stride_h = param.stride_w = 2;
  323. param.pad_h = param.pad_w = p;
  324. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  325. }
  326. }
  327. }
  328. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_FALLBACK) {
  329. using Param = param::Pooling;
  330. for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  331. for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  332. for (size_t p: {1, 2})
  333. {
  334. Param param;
  335. param.mode = Param::Mode::MAX;
  336. param.window_h = param.window_w = 3;
  337. param.stride_h = param.stride_w = 2;
  338. param.pad_h = param.pad_w = p;
  339. Checker<Pooling> checker(handle());
  340. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  341. }
  342. }
  343. #if MEGDNN_WITH_BENCHMARK
  344. namespace {
  345. template <typename Opr>
  346. void benchmark_impl(const typename Opr::Param& param,
  347. std::vector<SmallVector<TensorShape>> shapes, size_t RUNS,
  348. TaskExecutorConfig&& multi_thread_config,
  349. TaskExecutorConfig&& single_thread_config) {
  350. std::vector<float> multi_thread_times, single_thread_times;
  351. {
  352. auto multi_thread_hanle =
  353. create_cpu_handle(0, true, &multi_thread_config);
  354. auto benchmarker = Benchmarker<Opr>(multi_thread_hanle.get());
  355. benchmarker.set_times(RUNS).set_display(false).set_param(param);
  356. for (auto shape : shapes) {
  357. multi_thread_times.push_back(benchmarker.exec(shape) / RUNS);
  358. }
  359. }
  360. {
  361. auto single_thread_handle =
  362. create_cpu_handle(0, true, &single_thread_config);
  363. auto benchmarker = Benchmarker<Opr>(single_thread_handle.get());
  364. benchmarker.set_times(RUNS).set_display(false).set_param(param);
  365. for (auto shape : shapes) {
  366. single_thread_times.push_back(benchmarker.exec(shape) / RUNS);
  367. }
  368. }
  369. printf("Benchmark : Multi threads %zu, ", multi_thread_config.nr_thread);
  370. printf("core_ids:");
  371. for (size_t i = 0; i < multi_thread_config.affinity_core_set.size(); i++) {
  372. printf("%zu ", multi_thread_config.affinity_core_set[i]);
  373. }
  374. printf(", Single thread core_id %zu\n",
  375. single_thread_config.affinity_core_set[0]);
  376. for (size_t i = 0; i < shapes.size(); i++) {
  377. auto shape = shapes[i];
  378. printf("Case: ");
  379. for (auto sh : shape)
  380. printf("%s ", sh.to_string().c_str());
  381. printf("%zu threads time: %f,\n single thread time: "
  382. "%f. spead up = %f, speedup/cores=%f\n",
  383. multi_thread_config.nr_thread, multi_thread_times[i],
  384. single_thread_times[i],
  385. single_thread_times[i] / multi_thread_times[i],
  386. single_thread_times[i] / multi_thread_times[i] /
  387. multi_thread_config.nr_thread);
  388. }
  389. }
  390. } // namespace
  391. TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_POOLING) {
  392. constexpr size_t RUNS = 50;
  393. using Param = param::Pooling;
  394. Param param;
  395. param.window_h = param.window_w = 3;
  396. param.stride_h = param.stride_w = 2;
  397. param.pad_h = param.pad_w = 1;
  398. std::vector<SmallVector<TensorShape>> shapes;
  399. shapes.push_back({{32, 32, 215, 215}, {}});
  400. shapes.push_back({{32, 32, 128, 128}, {}});
  401. shapes.push_back({{8, 256, 100, 100}, {}});
  402. shapes.push_back({{1, 256, 100, 100}, {}});
  403. shapes.push_back({{1, 32, 100, 100}, {}});
  404. shapes.push_back({{1, 256, 80, 80}, {}});
  405. shapes.push_back({{1, 256, 60, 60}, {}});
  406. shapes.push_back({{1, 256, 30, 30}, {}});
  407. param.window_h = param.window_w = 3;
  408. param.stride_h = param.stride_w = 2;
  409. param.pad_h = param.pad_w = 1;
  410. printf("Benchmark POOLING kernel:%d*%d stride:%d,mode %d\n", param.window_h,
  411. param.stride_h, param.pad_h, static_cast<int>(param.mode));
  412. benchmark_impl<Pooling>(param, shapes, RUNS, {4, {0, 1, 2, 3}}, {1, {0}});
  413. benchmark_impl<Pooling>(param, shapes, RUNS, {4, {4, 5, 6, 7}}, {1, {4}});
  414. benchmark_impl<Pooling>(param, shapes, RUNS, {2, {0, 1}}, {1, {0}});
  415. }
  416. #endif
  417. } // namespace test
  418. } // namespace megdnn
  419. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台