You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_qat.py 2.9 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091
  1. from itertools import product
  2. import numpy as np
  3. from megengine import tensor
  4. from megengine.module import (
  5. Conv2d,
  6. ConvBn2d,
  7. ConvRelu2d,
  8. DequantStub,
  9. Module,
  10. QuantStub,
  11. )
  12. from megengine.quantization.quantize import disable_fake_quant, quantize_qat
  13. from megengine.test import assertTensorClose
  14. def test_qat_convbn2d():
  15. in_channels = 32
  16. out_channels = 64
  17. kernel_size = 3
  18. for groups, bias in product([1, 4], [True, False]):
  19. module = ConvBn2d(
  20. in_channels, out_channels, kernel_size, groups=groups, bias=bias
  21. )
  22. module.train()
  23. qat_module = quantize_qat(module, inplace=False)
  24. disable_fake_quant(qat_module)
  25. inputs = tensor(np.random.randn(4, in_channels, 32, 32).astype(np.float32))
  26. normal_outputs = module(inputs)
  27. # import pdb
  28. # pdb.set_trace()
  29. qat_outputs = qat_module(inputs)
  30. assertTensorClose(normal_outputs.numpy(), qat_outputs.numpy(), max_err=5e-6)
  31. assertTensorClose(
  32. module.bn.running_mean.numpy(),
  33. qat_module.bn.running_mean.numpy(),
  34. max_err=5e-8,
  35. )
  36. assertTensorClose(
  37. module.bn.running_var.numpy(),
  38. qat_module.bn.running_var.numpy(),
  39. max_err=5e-7,
  40. )
  41. module.eval()
  42. normal_outputs = module(inputs)
  43. qat_module.eval()
  44. qat_outputs = qat_module(inputs)
  45. assertTensorClose(normal_outputs.numpy(), qat_outputs.numpy(), max_err=5e-6)
  46. def test_qat_conv():
  47. in_channels = 32
  48. out_channels = 64
  49. kernel_size = 3
  50. class TestNet(Module):
  51. def __init__(self, groups, bias):
  52. super().__init__()
  53. self.quant = QuantStub()
  54. self.dequant = DequantStub()
  55. self.conv = Conv2d(
  56. in_channels, out_channels, kernel_size, groups=groups, bias=bias
  57. )
  58. self.conv_relu = ConvRelu2d(
  59. out_channels, in_channels, kernel_size, groups=groups, bias=bias
  60. )
  61. def forward(self, inp):
  62. out = self.quant(inp)
  63. out = self.conv(out)
  64. out = self.conv_relu(out)
  65. out = self.dequant(out)
  66. return out
  67. inputs = tensor(np.random.randn(4, in_channels, 32, 32).astype(np.float32))
  68. for groups, bias in product([1, 4], [True, False]):
  69. net = TestNet(groups, bias)
  70. net.train()
  71. qat_net = quantize_qat(net, inplace=False)
  72. disable_fake_quant(qat_net)
  73. normal_outputs = net(inputs)
  74. qat_outputs = qat_net(inputs)
  75. assertTensorClose(normal_outputs.numpy(), qat_outputs.numpy())
  76. net.eval()
  77. normal_outputs = net(inputs)
  78. qat_net.eval()
  79. qat_outputs = qat_net(inputs)
  80. assertTensorClose(normal_outputs.numpy(), qat_outputs.numpy())

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台