You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

opr_proxy.h 24 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585
  1. /**
  2. * \file dnn/test/common/opr_proxy.h
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #pragma once
  13. #include "src/common/opr_trait.h"
  14. #include "test/common/deduce_layout_proxy.h"
  15. #include "test/common/exec_proxy.h"
  16. #include "test/common/fast_run_cache.h"
  17. #include "test/common/inspect_type.h"
  18. #include "test/common/opr_algo_proxy.h"
  19. #include "test/common/timer.h"
  20. #include "test/common/workspace_wrapper.h"
  21. #include <algorithm>
  22. #include <limits>
  23. #include <memory>
  24. #include <unordered_map>
  25. namespace megdnn {
  26. namespace test {
  27. template <Algorithm::OprType>
  28. struct OprFromOprTypeTrait;
  29. template <typename Opr>
  30. struct OprTypeFromOprTrait;
  31. #define cb(_opr_type, _opr) \
  32. template <> \
  33. struct OprFromOprTypeTrait<Algorithm::OprType::_opr_type> { \
  34. using Opr = megdnn::_opr; \
  35. }; \
  36. template <> \
  37. struct OprTypeFromOprTrait<megdnn::_opr> { \
  38. constexpr static Algorithm::OprType opr_type = Algorithm::OprType::_opr_type; \
  39. }
  40. cb(MATRIX_MUL_FORWARD, MatrixMulForward);
  41. cb(BATCHED_MATRIX_MUL_FORWARD, BatchedMatrixMulForward);
  42. cb(CONVOLUTION_FORWARD, ConvolutionForward);
  43. cb(CONVOLUTION_BACKWARD_DATA, ConvolutionBackwardData);
  44. cb(CONVOLUTION_BACKWARD_FILTER, ConvolutionBackwardFilter);
  45. cb(CONVOLUTION3D_FORWARD, Convolution3DForward);
  46. cb(CONVOLUTION3D_BACKWARD_DATA, Convolution3DBackwardData);
  47. cb(CONVOLUTION3D_BACKWARD_FILTER, Convolution3DBackwardFilter);
  48. cb(LOCAL_SHARE_FORWARD, LocalShareForward);
  49. cb(LOCAL_SHARE_BACKWARD_DATA, LocalShareBackwardData);
  50. cb(LOCAL_SHARE_BACKWARD_FILTER, LocalShareBackwardFilter);
  51. cb(DEFORMABLE_CONV_FORWARD, DeformableConvForward);
  52. cb(DEFORMABLE_CONV_BACKWARD_DATA, DeformableConvBackwardData);
  53. cb(DEFORMABLE_CONV_BACKWARD_FILTER, DeformableConvBackwardFilter);
  54. cb(BATCH_CONV_FORWARD, BatchConvBiasForward);
  55. cb(CONVBIAS_FORWARD, ConvBiasForward);
  56. #undef cb
  57. // clang-format off
  58. #define FOREACH_OPR_TYPE(cb) \
  59. cb(MATRIX_MUL_FORWARD) \
  60. cb(BATCHED_MATRIX_MUL_FORWARD) \
  61. cb(CONVOLUTION_FORWARD) \
  62. cb(CONVOLUTION_BACKWARD_DATA) \
  63. cb(CONVOLUTION_BACKWARD_FILTER) \
  64. cb(CONVOLUTION3D_FORWARD) \
  65. cb(CONVOLUTION3D_BACKWARD_DATA) \
  66. cb(CONVOLUTION3D_BACKWARD_FILTER) \
  67. cb(LOCAL_SHARE_FORWARD) \
  68. cb(LOCAL_SHARE_BACKWARD_DATA) \
  69. cb(LOCAL_SHARE_BACKWARD_FILTER) \
  70. cb(DEFORMABLE_CONV_FORWARD) \
  71. cb(DEFORMABLE_CONV_BACKWARD_DATA) \
  72. cb(DEFORMABLE_CONV_BACKWARD_FILTER) \
  73. cb(BATCH_CONV_FORWARD) \
  74. cb(CONVBIAS_FORWARD)
  75. #define FOREACH_OPR_TYPE_WITH_STMT(cb, stmt) \
  76. cb(MATRIX_MUL_FORWARD, stmt) \
  77. cb(BATCHED_MATRIX_MUL_FORWARD, stmt) \
  78. cb(CONVOLUTION_FORWARD, stmt) \
  79. cb(CONVOLUTION_BACKWARD_DATA, stmt) \
  80. cb(CONVOLUTION_BACKWARD_FILTER, stmt) \
  81. cb(CONVOLUTION3D_FORWARD, stmt) \
  82. cb(CONVOLUTION3D_BACKWARD_DATA, stmt) \
  83. cb(CONVOLUTION3D_BACKWARD_FILTER, stmt) \
  84. cb(LOCAL_SHARE_FORWARD, stmt) \
  85. cb(LOCAL_SHARE_BACKWARD_DATA, stmt) \
  86. cb(LOCAL_SHARE_BACKWARD_FILTER, stmt) \
  87. cb(DEFORMABLE_CONV_FORWARD, stmt) \
  88. cb(DEFORMABLE_CONV_BACKWARD_DATA, stmt) \
  89. cb(DEFORMABLE_CONV_BACKWARD_FILTER, stmt) \
  90. cb(BATCH_CONV_FORWARD, stmt) \
  91. cb(CONVBIAS_FORWARD, stmt)
  92. // clang-format on
  93. #define _OPR_TYPE_CASE(_opr_type, _stmt) \
  94. case Algorithm::OprType::_opr_type: { \
  95. using _Opr = typename OprFromOprTypeTrait<Algorithm::OprType::_opr_type>::Opr; \
  96. _stmt; \
  97. break; \
  98. }
  99. #define FOREACH_OPR_TYPE_DISPATCH(_search_items, _stmt) \
  100. for (size_t _item_idx = 0; _item_idx < _search_items.size(); _item_idx++) { \
  101. auto&& _item = _search_items[_item_idx]; \
  102. switch (_item.opr_type) { \
  103. FOREACH_OPR_TYPE_WITH_STMT(_OPR_TYPE_CASE, _stmt) \
  104. default: \
  105. megdnn_throw("unknown opr_type"); \
  106. } \
  107. }
  108. template <
  109. typename Opr, size_t arity = OprTrait<Opr>::arity,
  110. bool has_workspace = OprTrait<Opr>::has_workspace,
  111. bool can_deduce_layout = OprTrait<Opr>::can_deduce_layout>
  112. struct OprProxyDefaultImpl : public DeduceLayoutProxy<Opr, arity, can_deduce_layout>,
  113. public ExecProxy<Opr, arity, has_workspace> {};
  114. template <typename Opr>
  115. struct OprProxy : public OprProxyDefaultImpl<Opr> {};
  116. template <typename Opr>
  117. struct OprWeightPreprocessProxy : public OprProxyDefaultImpl<Opr> {};
  118. template <typename Opr>
  119. struct OprProxyVectorToSingle {};
  120. template <>
  121. struct OprProxy<ElemwiseForward> {
  122. static void deduce_layout(ElemwiseForward* opr, TensorLayoutArray& layouts) {
  123. megdnn_assert(layouts.size() >= 2);
  124. auto inp = layouts;
  125. inp.pop_back();
  126. opr->deduce_layout(inp, layouts.back());
  127. }
  128. static void exec(ElemwiseForward* opr, const TensorNDArray& tensors) {
  129. megdnn_assert(tensors.size() >= 2);
  130. auto inp = tensors;
  131. inp.pop_back();
  132. opr->exec(inp, tensors.back());
  133. }
  134. };
  135. template <>
  136. struct OprProxy<ElemwiseMultiType> {
  137. static void deduce_layout(ElemwiseMultiType* opr, TensorLayoutArray& layouts) {
  138. megdnn_assert(layouts.size() >= 2);
  139. auto inp = layouts;
  140. inp.pop_back();
  141. opr->deduce_layout(inp, layouts.back());
  142. }
  143. static void exec(ElemwiseMultiType* opr, const TensorNDArray& tensors) {
  144. megdnn_assert(tensors.size() >= 2);
  145. auto inp = tensors;
  146. inp.pop_back();
  147. opr->exec(inp, tensors.back());
  148. }
  149. };
  150. template <>
  151. struct OprProxy<ConcatForward> {
  152. WorkspaceWrapper W;
  153. static void deduce_layout(ConcatForward* opr, TensorLayoutArray& layouts) {
  154. megdnn_assert(layouts.size() >= 2);
  155. auto inp = layouts;
  156. inp.pop_back();
  157. opr->deduce_layout(inp, layouts.back());
  158. }
  159. void exec(ConcatForward* opr, const TensorNDArray& tensors) {
  160. if (!W.valid()) {
  161. W = WorkspaceWrapper(opr->handle(), 0);
  162. }
  163. megdnn_assert(tensors.size() >= 2);
  164. auto inp = tensors;
  165. inp.pop_back();
  166. TensorLayoutArray layouts(tensors.size());
  167. std::transform(
  168. tensors.begin(), tensors.end(), layouts.begin(),
  169. [](const TensorND& tensor) { return tensor.layout; });
  170. auto inp_layouts = layouts;
  171. inp_layouts.pop_back();
  172. W.update(opr->get_workspace_in_bytes(inp_layouts, layouts.back()));
  173. auto inp_tensors = tensors;
  174. inp_tensors.pop_back();
  175. opr->exec(inp_tensors, tensors.back(), W.workspace());
  176. }
  177. };
  178. template <>
  179. struct OprProxy<SplitForward> : DeduceLayoutProxy<SplitForward, 0, false> {
  180. WorkspaceWrapper W;
  181. void exec(SplitForward* opr, const TensorNDArray& tensors) {
  182. megdnn_assert(tensors.size() >= 2);
  183. if (!W.valid()) {
  184. W = WorkspaceWrapper(opr->handle(), 0);
  185. }
  186. auto out = tensors;
  187. out.erase(out.begin());
  188. TensorLayoutArray layouts(tensors.size());
  189. std::transform(
  190. tensors.begin(), tensors.end(), layouts.begin(),
  191. [](const TensorND& tensor) { return tensor.layout; });
  192. auto out_layouts = layouts;
  193. out_layouts.erase(out_layouts.begin());
  194. W.update(opr->get_workspace_in_bytes(layouts.front(), out_layouts));
  195. auto out_tensors = tensors;
  196. out_tensors.erase(out_tensors.begin());
  197. opr->exec(tensors.front(), out_tensors, W.workspace());
  198. }
  199. };
  200. //! OprProxy impl for tenary oprs with profiling support
  201. template <class Opr>
  202. struct OprProxyProfilingBase
  203. : public DeduceLayoutProxy<
  204. Opr, OprTrait<Opr>::arity, OprTrait<Opr>::can_deduce_layout> {
  205. static constexpr int arity = OprTrait<Opr>::arity;
  206. size_t warmup_times = 10, exec_times = 100;
  207. //! whether to enable profiling
  208. bool m_profiling;
  209. WorkspaceWrapper W;
  210. //! target algo setup by profiler; it can also be directly specified by the
  211. //! caller
  212. ExecutionPolicy target_execution_policy;
  213. OprProxyProfilingBase(bool profile = false) { m_profiling = profile; }
  214. //! used for alloc tensor for weight preprocess
  215. static std::shared_ptr<TensorNDArray> alloc_tensors(
  216. Handle* handle, const TensorLayoutArray& layouts) {
  217. auto deleter = [handle](TensorNDArray* ptr) {
  218. for (auto&& i : *ptr) {
  219. auto pdata =
  220. static_cast<dt_byte*>(i.raw_ptr()) + i.layout.span().low_byte;
  221. megdnn_free(handle, pdata);
  222. }
  223. delete ptr;
  224. };
  225. std::shared_ptr<TensorNDArray> ret{new TensorNDArray, deleter};
  226. for (size_t i = 0; i < layouts.size(); ++i) {
  227. auto span = layouts[i].span();
  228. ret->emplace_back(
  229. static_cast<dt_byte*>(megdnn_malloc(handle, span.dist_byte())) -
  230. span.low_byte,
  231. layouts[i]);
  232. }
  233. return ret;
  234. }
  235. /**
  236. * flatten search space in postorder traversal
  237. * The subopr search construct a search tree
  238. *
  239. * A
  240. * / \
  241. * B1B2 C
  242. * / \
  243. * D1D2D3 E
  244. * We use postorder traverse the search tree.
  245. * D1 -> D2 -> D3 -> E -> B1 -> B2 -> C -> A
  246. */
  247. static std::vector<Algorithm::SearchItem> flatten_search_space(
  248. const TensorLayoutArray layouts, const std::string& param, Handle* handle) {
  249. megdnn_assert(layouts.size() == arity);
  250. auto opr = handle->create_operator<Opr>();
  251. opr->param() = Algorithm::deserialize_read_pod<typename Opr::Param>(param);
  252. std::vector<Algorithm::SearchItem> ret;
  253. for (auto algo_info :
  254. AlgoProxy<Opr, arity>::get_all_algorithms_info_safe(opr.get(), layouts)) {
  255. Algorithm* algo = opr->get_algorithm_from_desc(algo_info.desc);
  256. std::vector<Algorithm::SearchItem>&& sub_items =
  257. algo->get_subopr_list(layouts, opr.get());
  258. FOREACH_OPR_TYPE_DISPATCH(sub_items, {
  259. auto space = OprProxyProfilingBase<_Opr>::flatten_search_space(
  260. _item.layouts, _item.param, handle);
  261. ret.insert(ret.end(), space.begin(), space.end());
  262. });
  263. }
  264. ret.push_back({OprTypeFromOprTrait<Opr>::opr_type, param, layouts});
  265. return ret;
  266. }
  267. static void construct_execution_policy(
  268. const TensorLayoutArray& layouts, const std::string& param, Handle* handle,
  269. FastRunCache& cache, ExecutionPolicy& policy) {
  270. megdnn_assert(layouts.size() == arity);
  271. auto opr = handle->create_operator<Opr>();
  272. opr->param() = Algorithm::deserialize_read_pod<typename Opr::Param>(param);
  273. if (!policy.algo.valid()) {
  274. policy.algo = cache.get(Algorithm::SearchItem{
  275. OprTypeFromOprTrait<Opr>::opr_type, param, layouts});
  276. megdnn_assert(
  277. policy.algo.valid(),
  278. "No cache found, maybe some error occured in "
  279. "flatten_search_space or get_subopr_list");
  280. }
  281. policy.sub_policy.clear();
  282. Algorithm* algo = opr->get_algorithm_from_desc(policy.algo);
  283. std::vector<Algorithm::SearchItem>&& sub_items =
  284. algo->get_subopr_list(layouts, opr.get());
  285. FOREACH_OPR_TYPE_DISPATCH(sub_items, {
  286. policy.sub_policy.push_back({});
  287. OprProxyProfilingBase<_Opr>::construct_execution_policy(
  288. _item.layouts, _item.param, handle, cache,
  289. policy.sub_policy.back());
  290. });
  291. return;
  292. }
  293. /**
  294. * \brief search and get the best execution_policy
  295. */
  296. static void search(
  297. const TensorLayoutArray& layouts, const std::string& param,
  298. WorkspaceWrapper& workspace_wrapper, Handle* handle, size_t warmup_times,
  299. size_t exec_times, FastRunCache& cache) {
  300. megdnn_assert(layouts.size() == arity);
  301. auto opr = handle->create_operator<Opr>();
  302. opr->param() = Algorithm::deserialize_read_pod<typename Opr::Param>(param);
  303. SmallVector<size_t> sizes_in_bytes;
  304. for (const auto& layout : layouts) {
  305. sizes_in_bytes.push_back(layout.span().dist_byte());
  306. }
  307. float min_time = std::numeric_limits<float>::max();
  308. Algorithm::Info::Desc best_algo;
  309. std::string log_info = "Profiling start: ";
  310. for (auto&& layout : layouts) {
  311. log_info += layout.to_string() + " ";
  312. }
  313. megdnn_log("%s", log_info.c_str());
  314. best_algo = cache.get(Algorithm::SearchItem{
  315. OprTypeFromOprTrait<Opr>::opr_type, param, layouts});
  316. if (best_algo.valid()) {
  317. auto&& algo = opr->get_algorithm_from_desc(best_algo);
  318. MEGDNN_MARK_USED_VAR(algo);
  319. megdnn_log("Find best algo %s in cache", algo->name());
  320. return;
  321. }
  322. for (auto algo :
  323. AlgoProxy<Opr, arity>::get_all_algorithms_info_safe(opr.get(), layouts)) {
  324. //! construct execution_policy
  325. opr->execution_policy().algo = algo.desc;
  326. construct_execution_policy(
  327. layouts, param, handle, cache, opr->execution_policy());
  328. auto workspace_size =
  329. AlgoProxy<Opr, arity>::get_workspace_in_bytes(opr.get(), layouts);
  330. sizes_in_bytes.push_back(workspace_size);
  331. WorkspaceBundle wb(nullptr, sizes_in_bytes);
  332. workspace_wrapper.update(wb.total_size_in_bytes());
  333. wb.set(workspace_wrapper.workspace().raw_ptr);
  334. TensorNDArray tensors;
  335. for (size_t i = 0; i < arity; i++) {
  336. tensors.push_back({wb.get(i), layouts[i]});
  337. }
  338. for (size_t times = 0; times < warmup_times; ++times) {
  339. AlgoProxy<Opr, arity>::exec(
  340. opr.get(), tensors, wb.get_workspace(arity));
  341. }
  342. megcoreSynchronize(opr->handle()->megcore_computing_handle());
  343. Timer timer;
  344. timer.start();
  345. for (size_t times = 0; times < exec_times; ++times) {
  346. AlgoProxy<Opr, arity>::exec(
  347. opr.get(), tensors, wb.get_workspace(arity));
  348. }
  349. megcoreSynchronize(opr->handle()->megcore_computing_handle());
  350. timer.stop();
  351. megdnn_log(
  352. "%.3fms %s", timer.get_time_in_us() / 1e3, algo.desc.name.c_str());
  353. if (min_time > timer.get_time_in_us()) {
  354. min_time = timer.get_time_in_us();
  355. best_algo = algo.desc;
  356. }
  357. sizes_in_bytes.pop_back();
  358. }
  359. auto&& algo = opr->get_algorithm_from_desc(best_algo);
  360. MEGDNN_MARK_USED_VAR(algo);
  361. megdnn_log("Profiling end, got best algo: %s", algo->name());
  362. cache.put(
  363. Algorithm::SearchItem{
  364. OprTypeFromOprTrait<Opr>::opr_type, param, layouts},
  365. best_algo);
  366. }
  367. void exec(Opr* opr, const TensorNDArray& tensors) {
  368. megdnn_assert(tensors.size() == arity);
  369. if (!W.valid()) {
  370. W = WorkspaceWrapper(opr->handle(), 0);
  371. }
  372. TensorLayoutArray layouts;
  373. for (auto&& tensor : tensors) {
  374. layouts.push_back(tensor.layout);
  375. }
  376. if (m_profiling && !target_execution_policy.algo.valid()) {
  377. FastRunCache cache;
  378. std::string param_str;
  379. Algorithm::serialize_write_pod(opr->param(), param_str);
  380. auto&& search_items =
  381. flatten_search_space(layouts, param_str, opr->handle());
  382. FOREACH_OPR_TYPE_DISPATCH(search_items, {
  383. OprProxyProfilingBase<_Opr>::search(
  384. _item.layouts, _item.param, W, opr->handle(), warmup_times,
  385. exec_times, cache);
  386. });
  387. construct_execution_policy(
  388. layouts, param_str, opr->handle(), cache, opr->execution_policy());
  389. target_execution_policy = opr->execution_policy();
  390. auto workspace_size =
  391. AlgoProxy<Opr, arity>::get_workspace_in_bytes(opr, layouts);
  392. W.update(workspace_size);
  393. }
  394. if (!target_execution_policy.algo.valid()) {
  395. auto workspace_size =
  396. AlgoProxy<Opr, arity>::get_workspace_in_bytes(opr, layouts);
  397. W.update(workspace_size);
  398. }
  399. AlgoProxy<Opr, arity>::exec(opr, tensors, W.workspace());
  400. }
  401. };
  402. #define DEF_PROF(c) \
  403. template <> \
  404. struct OprProxy<c> : public OprProxyProfilingBase<c> { \
  405. using OprProxyProfilingBase<c>::OprProxyProfilingBase; \
  406. }
  407. DEF_PROF(MatrixMulForward);
  408. DEF_PROF(ConvolutionForward);
  409. DEF_PROF(ConvolutionBackwardData);
  410. DEF_PROF(ConvolutionBackwardFilter);
  411. DEF_PROF(LocalShareForward);
  412. DEF_PROF(LocalShareBackwardData);
  413. DEF_PROF(LocalShareBackwardFilter);
  414. DEF_PROF(DeformableConvForward);
  415. DEF_PROF(DeformableConvBackwardFilter);
  416. DEF_PROF(BatchConvBiasForward);
  417. DEF_PROF(ConvBiasForward);
  418. DEF_PROF(DeformableConvBackwardData);
  419. #undef DEF_PROF
  420. template <class Opr>
  421. struct OprWeightPreprocessProxyImpl : public OprProxyProfilingBase<Opr> {
  422. using Base = OprProxyProfilingBase<Opr>;
  423. static constexpr int arity = OprTrait<Opr>::arity;
  424. void exec(Opr* opr, const TensorNDArray& tensors) {
  425. megdnn_assert(tensors.size() == arity);
  426. if (!Base::W.valid()) {
  427. Base::W = WorkspaceWrapper(opr->handle(), 0);
  428. }
  429. TensorLayoutArray layouts;
  430. for (auto&& tensor : tensors) {
  431. layouts.push_back(tensor.layout);
  432. }
  433. if (Base::m_profiling && !Base::target_execution_policy.algo.valid()) {
  434. size_t min_time = std::numeric_limits<size_t>::max();
  435. for (auto algo :
  436. AlgoProxy<Opr, arity>::get_all_algorithms_info_safe(opr, layouts)) {
  437. opr->execution_policy().algo = algo.desc;
  438. auto preprocess_tensors = weight_prerocess(opr, tensors, algo.desc);
  439. megcoreSynchronize(opr->handle()->megcore_computing_handle());
  440. typename Opr::PreprocessedFilter preprocessed_filter{
  441. nullptr, *preprocess_tensors};
  442. auto workspace_size = AlgoProxy<Opr, arity>::get_workspace_in_bytes(
  443. opr, layouts, &preprocessed_filter);
  444. Base::W.update(workspace_size);
  445. for (size_t times = 0; times < Base::warmup_times; ++times) {
  446. AlgoProxy<Opr, arity>::exec(
  447. opr, tensors, &preprocessed_filter, Base::W.workspace());
  448. }
  449. megcoreSynchronize(opr->handle()->megcore_computing_handle());
  450. Timer timer;
  451. timer.start();
  452. for (size_t times = 0; times < Base::exec_times; ++times) {
  453. AlgoProxy<Opr, arity>::exec(
  454. opr, tensors, &preprocessed_filter, Base::W.workspace());
  455. }
  456. megcoreSynchronize(opr->handle()->megcore_computing_handle());
  457. timer.stop();
  458. printf("%.3fms %s\n", timer.get_time_in_us() / 1e3,
  459. algo.desc.name.c_str());
  460. if (min_time > timer.get_time_in_us()) {
  461. min_time = timer.get_time_in_us();
  462. Base::target_execution_policy.algo = algo.desc;
  463. }
  464. }
  465. opr->execution_policy() = Base::target_execution_policy;
  466. auto preprocess_tensors =
  467. weight_prerocess(opr, tensors, Base::target_execution_policy.algo);
  468. megcoreSynchronize(opr->handle()->megcore_computing_handle());
  469. typename Opr::PreprocessedFilter preprocessed_filter{
  470. nullptr, *preprocess_tensors};
  471. auto workspace_size = AlgoProxy<Opr, arity>::get_workspace_in_bytes(
  472. opr, layouts, &preprocessed_filter);
  473. Base::W.update(workspace_size);
  474. }
  475. auto preprocess_tensors =
  476. weight_prerocess(opr, tensors, Base::target_execution_policy.algo);
  477. megcoreSynchronize(opr->handle()->megcore_computing_handle());
  478. typename Opr::PreprocessedFilter preprocessed_filter{
  479. nullptr, *preprocess_tensors};
  480. if (!Base::target_execution_policy.algo.valid()) {
  481. auto workspace_size = AlgoProxy<Opr, arity>::get_workspace_in_bytes(
  482. opr, layouts, &preprocessed_filter);
  483. Base::W.update(workspace_size);
  484. }
  485. AlgoProxy<Opr, arity>::exec(
  486. opr, tensors, &preprocessed_filter, Base::W.workspace());
  487. }
  488. //! handle weight preprocess
  489. std::shared_ptr<TensorNDArray> weight_prerocess(
  490. Opr* opr, const TensorNDArray& tensors,
  491. const typename Opr::AlgorithmDesc&) {
  492. TensorLayoutArray layouts;
  493. for (auto&& tensor : tensors) {
  494. layouts.push_back(tensor.layout);
  495. }
  496. auto weight_perprocess_layouts =
  497. AlgoProxy<Opr, arity>::deduce_preprocessed_filter_layout(opr, layouts);
  498. auto preprocessed_filter_tensors_ptr =
  499. Base::alloc_tensors(opr->handle(), weight_perprocess_layouts);
  500. typename Opr::PreprocessedFilter preprocessed_filter{
  501. nullptr, *preprocessed_filter_tensors_ptr};
  502. size_t preprocess_workspace_size =
  503. AlgoProxy<Opr, arity>::get_preprocess_workspace_in_bytes(opr, layouts);
  504. WorkspaceWrapper preprocess_workspace(opr->handle(), preprocess_workspace_size);
  505. AlgoProxy<Opr, arity>::exec_preprocess(
  506. opr, tensors, layouts, &preprocessed_filter,
  507. preprocess_workspace.workspace());
  508. return preprocessed_filter_tensors_ptr;
  509. }
  510. };
  511. #define DEF_PROF(c) \
  512. template <> \
  513. struct OprWeightPreprocessProxy<c> : public OprWeightPreprocessProxyImpl<c> { \
  514. using OprWeightPreprocessProxyImpl<c>::OprWeightPreprocessProxyImpl; \
  515. }
  516. DEF_PROF(ConvolutionForward);
  517. DEF_PROF(ConvBias);
  518. #undef DEF_PROF
  519. } // namespace test
  520. } // namespace megdnn
  521. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台