You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_external.py 1.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import io
  10. import os
  11. import platform
  12. import numpy as np
  13. import pytest
  14. import megengine as mge
  15. import megengine.utils.comp_graph_tools as cgtools
  16. from megengine import Tensor
  17. from megengine.distributed.helper import get_device_count_by_fork
  18. from megengine.jit import trace
  19. from megengine.module import Module
  20. from megengine.module.external import TensorrtRuntimeSubgraph
  21. class MyModule(Module):
  22. def __init__(self, data):
  23. from megengine.module.external import CambriconSubgraph
  24. super().__init__()
  25. self.cambricon = CambriconSubgraph(data, "subnet0", True)
  26. def forward(self, inputs):
  27. out = self.cambricon(inputs)
  28. return out
  29. @pytest.mark.skip(reason="cambricon unimplemented")
  30. def test_cambricon_module():
  31. model = "CambriconRuntimeOprTest.MutableBatchSize.mlu"
  32. model = os.path.join(os.path.dirname(__file__), model)
  33. with open(model, "rb") as f:
  34. data = f.read()
  35. m = MyModule(data)
  36. inp = Tensor(
  37. np.random.normal((1, 64, 32, 32)).astype(np.float16), device="cambricon0"
  38. )
  39. def inference(inps):
  40. pred = m(inps)
  41. return pred
  42. pred = inference([inp])

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台