You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dataloader.py 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import collections
  10. import math
  11. import multiprocessing
  12. import platform
  13. import queue
  14. import random
  15. import time
  16. import numpy as np
  17. from ..logger import get_logger
  18. from ..random.rng import _random_seed_generator
  19. from .collator import Collator
  20. from .dataset import Dataset
  21. from .sampler import Sampler, SequentialSampler
  22. from .transform import PseudoTransform, Transform
  23. logger = get_logger(__name__)
  24. MP_QUEUE_GET_TIMEOUT = 5
  25. class DataLoader:
  26. __initialized = False
  27. def __init__(
  28. self,
  29. dataset: Dataset,
  30. sampler: Sampler = None,
  31. transform: Transform = None,
  32. collator: Collator = None,
  33. num_workers: int = 0,
  34. timeout: int = 0,
  35. divide: bool = False,
  36. ):
  37. r"""
  38. Provides a convenient way to iterate on a given dataset.
  39. `DataLoader` combines a dataset with `sampler`, `transform` and `collator`,
  40. make it flexible to get minibatch continually from a dataset.
  41. :type dataset: Dataset
  42. :param dataset: dataset from which to load the minibatch.
  43. :type sampler: Sampler
  44. :param sampler: defines the strategy to sample data from the dataset.
  45. :type transform: Transform
  46. :param transform: defined the transforming strategy for a sampled batch.
  47. Default: None
  48. :type collator: Collator
  49. :param collator: defined the merging strategy for a transformed batch.
  50. Default: None
  51. :type num_workers: int
  52. :param num_workers: the number of sub-process to load, transform and collate
  53. the batch. ``0`` means using single-process. Default: 0
  54. :type timeout: int
  55. :param timeout: if positive, means the timeout value(second) for collecting a
  56. batch from workers. Default: 0
  57. :type divide: bool
  58. :param divide: define the paralleling strategy in multi-processing mode.
  59. ``True`` means one batch is divided into :attr:`num_workers` pieces, and
  60. the workers will process these pieces parallelly. ``False`` means
  61. different sub-process will process different batch. Default: False
  62. """
  63. if num_workers < 0:
  64. raise ValueError("num_workers should not be negative")
  65. if timeout < 0:
  66. raise ValueError("timeout should not be negative")
  67. if divide and num_workers <= 1:
  68. raise ValueError("divide should not be set to True when num_workers <= 1")
  69. self.dataset = dataset
  70. self.num_workers = num_workers
  71. self.timeout = timeout
  72. self.divide = divide
  73. if sampler is None:
  74. self.sampler = SequentialSampler(dataset, batch_size=1, drop_last=False)
  75. else:
  76. self.sampler = sampler
  77. if divide:
  78. if self.sampler.batch_size <= self.num_workers:
  79. raise ValueError(
  80. "batch size must not smaller than num_workers in divide mode."
  81. )
  82. elif self.sampler.batch_size % self.num_workers:
  83. logger.warning(
  84. "batch size is not divisible by num_workers, may lose performance in divide mode."
  85. )
  86. if transform is None:
  87. self.transform = PseudoTransform()
  88. else:
  89. self.transform = transform
  90. if collator is None:
  91. self.collator = Collator()
  92. else:
  93. self.collator = collator
  94. self.__initialized = True
  95. def __iter__(self):
  96. if platform.system() == "Windows" and self.num_workers > 0:
  97. print(
  98. "pyarrow.plasma does not support ParallelDataLoader on windows, changing num_workers to be zero"
  99. )
  100. self.num_workers = 0
  101. if self.num_workers == 0:
  102. return _SerialDataLoaderIter(self)
  103. else:
  104. return _ParallelDataLoaderIter(self)
  105. def __len__(self):
  106. return len(self.sampler)
  107. class _BaseDataLoaderIter:
  108. def __init__(self, loader):
  109. self.dataset = loader.dataset
  110. self.sampler = loader.sampler
  111. self.seed = _random_seed_generator().__next__()
  112. self.transform = loader.transform
  113. self.collator = loader.collator
  114. self.num_workers = loader.num_workers
  115. self.timeout = loader.timeout
  116. self.divide = loader.divide
  117. self.num_processed = 0
  118. def _get_next_batch(self):
  119. raise NotImplementedError
  120. def __len__(self):
  121. return len(self.sampler)
  122. def __iter__(self):
  123. return self
  124. def __next__(self):
  125. if self.num_processed >= len(self):
  126. raise StopIteration
  127. minibatch = self._get_next_batch()
  128. self.num_processed += 1
  129. return minibatch
  130. class _SerialDataLoaderIter(_BaseDataLoaderIter):
  131. def __init__(self, loader):
  132. super(_SerialDataLoaderIter, self).__init__(loader)
  133. self.indices_iter = iter(self.sampler)
  134. def _get_next_batch(self):
  135. indices = next(self.indices_iter)
  136. items = [self.dataset[idx] for idx in indices]
  137. trans_items = self.transform.apply_batch(items)
  138. return self.collator.apply(trans_items)
  139. class _ParallelDataLoaderIter(_BaseDataLoaderIter):
  140. __initialized = False
  141. def __init__(self, loader):
  142. super(_ParallelDataLoaderIter, self).__init__(loader)
  143. self.task_queues = [
  144. multiprocessing.Queue(maxsize=2) for _ in range(self.num_workers)
  145. ]
  146. self.feed_batch_idx = multiprocessing.Value("i", 0)
  147. self.target_batch_idx = multiprocessing.Value("i", 0)
  148. self.shutdown_flag = multiprocessing.Value("i", 0)
  149. self.trans_data_queues = [
  150. multiprocessing.Queue(maxsize=1) for _ in range(self.num_workers)
  151. ]
  152. # use shared-memory queue implemented by pyarrow plasma store.
  153. from ._queue import PlasmaShmQueue
  154. self.batch_queue = PlasmaShmQueue(maxsize=2)
  155. self.task_feeding_worker = multiprocessing.Process(
  156. target=_task_feeding_loop,
  157. args=(
  158. iter(self.sampler),
  159. self.task_queues,
  160. self.num_workers,
  161. self.divide,
  162. self.shutdown_flag,
  163. self.feed_batch_idx,
  164. ),
  165. daemon=True,
  166. )
  167. self.task_feeding_worker.start()
  168. self.workers = []
  169. for worker_id in range(self.num_workers):
  170. worker = multiprocessing.Process(
  171. target=_worker_loop,
  172. args=(
  173. self.dataset,
  174. self.task_queues[worker_id],
  175. self.trans_data_queues[worker_id],
  176. self.transform,
  177. self.seed + worker_id + 1,
  178. self.shutdown_flag,
  179. ),
  180. daemon=True,
  181. )
  182. worker.start()
  183. self.workers.append(worker)
  184. if self.divide:
  185. self.data_collecting_worker = multiprocessing.Process(
  186. target=_data_gathering_loop,
  187. args=(
  188. self.trans_data_queues,
  189. self.batch_queue,
  190. self.collator,
  191. len(self),
  192. self.num_workers,
  193. self.shutdown_flag,
  194. self.target_batch_idx,
  195. ),
  196. daemon=True,
  197. )
  198. else:
  199. self.data_collecting_worker = multiprocessing.Process(
  200. target=_data_selecting_loop,
  201. args=(
  202. self.trans_data_queues,
  203. self.batch_queue,
  204. self.collator,
  205. len(self),
  206. self.num_workers,
  207. self.shutdown_flag,
  208. self.target_batch_idx,
  209. ),
  210. daemon=True,
  211. )
  212. self.data_collecting_worker.start()
  213. self.__initialized = True
  214. def _check_workers(self):
  215. # Check the status of each worker.
  216. if not self.data_collecting_worker.is_alive():
  217. exitcode = self.task_feeding_worker.exitcode
  218. if exitcode != 0:
  219. raise RuntimeError("data collecting worker died. {}".format(exitcode))
  220. if not self.task_feeding_worker.is_alive():
  221. exitcode = self.task_feeding_worker.exitcode
  222. if exitcode != 0:
  223. raise RuntimeError("task feeding worker died. {}".format(exitcode))
  224. for worker_id, worker in enumerate(self.workers):
  225. if not worker.is_alive():
  226. exitcode = worker.exitcode
  227. if exitcode != 0:
  228. raise RuntimeError("worker:{} died. {}".format(worker_id, exitcode))
  229. logger.debug("all workers are alive.")
  230. def _try_get_next_batch(self):
  231. start_time = time.time()
  232. while True:
  233. self._check_workers()
  234. try:
  235. return self.batch_queue.get(timeout=1)
  236. except queue.Empty:
  237. logger.debug("batch queue empty!")
  238. waited_time = time.time() - start_time
  239. if self.timeout > 0:
  240. if waited_time > self.timeout:
  241. raise RuntimeError("get_next_batch timeout!")
  242. def _get_next_batch(self):
  243. batch_data = self._try_get_next_batch()
  244. return batch_data
  245. def _shutdown(self):
  246. with self.shutdown_flag.get_lock():
  247. self.shutdown_flag.value = 1
  248. if self.task_feeding_worker.is_alive():
  249. self.task_feeding_worker.terminate()
  250. self.task_feeding_worker.join()
  251. if self.data_collecting_worker.is_alive():
  252. self.data_collecting_worker.terminate()
  253. self.data_collecting_worker.join()
  254. for worker in self.workers:
  255. if worker.is_alive():
  256. worker.terminate()
  257. worker.join()
  258. for q in self.trans_data_queues:
  259. q.cancel_join_thread()
  260. q.close()
  261. for q in self.task_queues:
  262. q.cancel_join_thread()
  263. q.close()
  264. self.batch_queue.cancel_join_thread()
  265. self.batch_queue.close()
  266. def __del__(self):
  267. if self.__initialized:
  268. self._shutdown()
  269. def _task_feeding_loop(
  270. indices_iter, task_queues, num_workers, divide, shutdown_flag, feed_batch_idx
  271. ):
  272. # Feed the indices into the task queues
  273. while True:
  274. if shutdown_flag.value == 1:
  275. break
  276. batch_idx = feed_batch_idx.value
  277. try:
  278. indices = next(indices_iter)
  279. except StopIteration:
  280. break
  281. if divide:
  282. # make sure all task_queues is ready for put
  283. while any([q.full() for q in task_queues]):
  284. if shutdown_flag.value == 1:
  285. return
  286. # divide into small pieces, feed to different workers.
  287. sub_num = math.ceil(len(indices) / num_workers)
  288. for worker_id in range(num_workers):
  289. sub_indices = indices[worker_id * sub_num : (worker_id + 1) * sub_num]
  290. task_queues[worker_id].put((batch_idx, sub_indices))
  291. else:
  292. # distribute tasks to different workers uniformly.
  293. target_id = batch_idx % num_workers
  294. while task_queues[target_id].full():
  295. if shutdown_flag.value == 1:
  296. return
  297. task_queues[target_id].put((batch_idx, indices))
  298. with feed_batch_idx.get_lock():
  299. feed_batch_idx.value += 1
  300. def _worker_loop(dataset, task_queue, trans_data_queue, transform, seed, shutdown_flag):
  301. # Get dataset items and do the transform
  302. random.seed(seed)
  303. np.random.seed(seed)
  304. while True:
  305. if shutdown_flag.value == 1:
  306. break
  307. try:
  308. batch_idx, indices = task_queue.get(timeout=MP_QUEUE_GET_TIMEOUT)
  309. except queue.Empty:
  310. continue
  311. if len(indices) > 0:
  312. items = [dataset[idx] for idx in indices]
  313. trans_items = transform.apply_batch(items)
  314. else:
  315. # in case of incomplete last batch
  316. trans_items = ()
  317. while True:
  318. try:
  319. trans_data_queue.put((batch_idx, trans_items), timeout=1)
  320. break
  321. except queue.Full:
  322. if shutdown_flag.value == 1:
  323. break
  324. logger.debug("batch part queue is full!")
  325. def _data_gathering_loop(
  326. trans_data_queues,
  327. batch_queue,
  328. collator,
  329. length,
  330. num_workers,
  331. shutdown_flag,
  332. target_idx,
  333. ):
  334. # Gathering the small pieces of batch data into full batch data
  335. while True:
  336. if shutdown_flag.value == 1:
  337. break
  338. target_batch_idx = target_idx.value
  339. if target_batch_idx >= length:
  340. break
  341. full_trans_items = []
  342. for worker_id in range(num_workers):
  343. while True:
  344. try:
  345. batch_idx, trans_items = trans_data_queues[worker_id].get(
  346. timeout=MP_QUEUE_GET_TIMEOUT
  347. )
  348. break
  349. except queue.Empty:
  350. if shutdown_flag.value == 1:
  351. break
  352. logger.debug(
  353. "worker:{} data queue get timeout! target batch idx:{}".format(
  354. worker_id, target_batch_idx
  355. )
  356. )
  357. if batch_idx != target_batch_idx:
  358. raise RuntimeError(
  359. "Unexperted batch_idx in data gathering loop. worker_id:{}.".format(
  360. worker_id
  361. )
  362. )
  363. else:
  364. full_trans_items.extend(trans_items)
  365. # Merge different parts into a batch.
  366. full_batch = collator.apply(full_trans_items)
  367. while True:
  368. try:
  369. batch_queue.put(full_batch, timeout=1)
  370. break
  371. except queue.Full:
  372. if shutdown_flag.value == 1:
  373. break
  374. logger.debug("batch queue is full!")
  375. with target_idx.get_lock():
  376. target_idx.value += 1
  377. batch_queue.disconnect_client()
  378. def _data_selecting_loop(
  379. trans_data_queues,
  380. batch_queue,
  381. collator,
  382. length,
  383. num_workers,
  384. shutdown_flag,
  385. target_idx,
  386. ):
  387. # Make sure that batch is generated exactly with the same order as generated indices
  388. while True:
  389. if shutdown_flag.value == 1:
  390. break
  391. target_batch_idx = target_idx.value
  392. if target_batch_idx >= length:
  393. break
  394. target_worker_id = target_batch_idx % num_workers
  395. while True:
  396. try:
  397. batch_idx, trans_items = trans_data_queues[target_worker_id].get(
  398. timeout=MP_QUEUE_GET_TIMEOUT
  399. )
  400. batch_data = collator.apply(trans_items)
  401. break
  402. except queue.Empty:
  403. if shutdown_flag.value == 1:
  404. break
  405. logger.debug(
  406. "worker:{} data queue get timeout! target batch idx:{}".format(
  407. target_worker_id, target_batch_idx
  408. )
  409. )
  410. if batch_idx != target_batch_idx:
  411. raise RuntimeError(
  412. "batch_idx {} mismatch the target_batch_idx {}".format(
  413. batch_idx, target_batch_idx
  414. )
  415. )
  416. while True:
  417. try:
  418. batch_queue.put(batch_data, timeout=1)
  419. break
  420. except queue.Full:
  421. if shutdown_flag.value == 1:
  422. break
  423. logger.debug("batch queue is full!")
  424. with target_idx.get_lock():
  425. target_idx.value += 1
  426. batch_queue.disconnect_client()

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台