You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

pooling.py 3.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. from abc import abstractmethod
  10. from typing import Tuple, Union
  11. from ..functional import avg_pool2d, max_pool2d
  12. from .module import Module
  13. class _PoolNd(Module):
  14. def __init__(
  15. self,
  16. kernel_size: Union[int, Tuple[int, int]],
  17. stride: Union[int, Tuple[int, int]] = None,
  18. padding: Union[int, Tuple[int, int]] = 0,
  19. ):
  20. super(_PoolNd, self).__init__()
  21. self.kernel_size = kernel_size
  22. self.stride = stride or kernel_size
  23. self.padding = padding
  24. @abstractmethod
  25. def forward(self, inp):
  26. pass
  27. def _module_info_string(self) -> str:
  28. return "kernel_size={kernel_size}, stride={stride}, padding={padding}".format(
  29. **self.__dict__
  30. )
  31. class MaxPool2d(_PoolNd):
  32. r"""
  33. Applies a 2D max pooling over an input.
  34. For instance, given an input of the size :math:`(N, C, H, W)` and
  35. :attr:`kernel_size` :math:`(kH, kW)`, this layer generates the output of
  36. the size :math:`(N, C, H_{out}, W_{out})` through a process described as:
  37. .. math::
  38. \begin{aligned}
  39. out(N_i, C_j, h, w) ={} & \max_{m=0, \ldots, kH-1} \max_{n=0, \ldots, kW-1}
  40. \text{input}(N_i, C_j, \text{stride[0]} \times h + m,
  41. \text{stride[1]} \times w + n)
  42. \end{aligned}
  43. If :attr:`padding` is non-zero, then the input is implicitly zero-padded on
  44. both sides for :attr:`padding` number of points.
  45. :param kernel_size: the size of the window to take a max over.
  46. :param stride: the stride of the window. Default value is kernel_size.
  47. :param padding: implicit zero padding to be added on both sides.
  48. Examples:
  49. .. testcode::
  50. import numpy as np
  51. import megengine as mge
  52. import megengine.module as M
  53. m = M.MaxPool2d(kernel_size=3, stride=1, padding=0)
  54. inp = mge.tensor(np.arange(0, 16).astype("float32").reshape(1, 1, 4, 4))
  55. oup = m(inp)
  56. print(oup.numpy())
  57. Outputs:
  58. .. testoutput::
  59. [[[[10. 11.]
  60. [14. 15.]]]]
  61. """
  62. def forward(self, inp):
  63. return max_pool2d(inp, self.kernel_size, self.stride, self.padding)
  64. class AvgPool2d(_PoolNd):
  65. r"""
  66. Applies a 2D average pooling over an input.
  67. For instance, given an input of the size :math:`(N, C, H, W)` and
  68. :attr:`kernel_size` :math:`(kH, kW)`, this layer generates the output of
  69. the size :math:`(N, C, H_{out}, W_{out})` through a process described as:
  70. .. math::
  71. out(N_i, C_j, h, w) = \frac{1}{kH * kW} \sum_{m=0}^{kH-1} \sum_{n=0}^{kW-1}
  72. input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)
  73. If :attr:`padding` is non-zero, then the input is implicitly zero-padded on
  74. both sides for :attr:`padding` number of points.
  75. :param kernel_size: the size of the window.
  76. :param stride: the stride of the window. Default value is kernel_size。
  77. :param padding: implicit zero padding to be added on both sides.
  78. Examples:
  79. .. testcode::
  80. import numpy as np
  81. import megengine as mge
  82. import megengine.module as M
  83. m = M.AvgPool2d(kernel_size=3, stride=1, padding=0)
  84. inp = mge.tensor(np.arange(0, 16).astype("float32").reshape(1, 1, 4, 4))
  85. oup = m(inp)
  86. print(oup.numpy())
  87. Outputs:
  88. .. testoutput::
  89. [[[[ 5. 6.]
  90. [ 9. 10.]]]]
  91. """
  92. def forward(self, inp):
  93. return avg_pool2d(inp, self.kernel_size, self.stride, self.padding)

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台