You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

pooling_multi_thread.cpp 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401
  1. /**
  2. * \file dnn/test/arm_common/pooling_multi_thread.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "test/arm_common/fixture.h"
  12. #include "test/common/pooling.h"
  13. #include "test/common/checker.h"
  14. #include "test/common/benchmarker.h"
  15. #include "test/common/rng.h"
  16. namespace megdnn {
  17. namespace test {
  18. /*********************** mutli threads *********************************/
  19. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING) {
  20. using Param = param::Pooling;
  21. for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  22. for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  23. for (size_t p: {1, 2})
  24. {
  25. Param param;
  26. param.mode = Param::Mode::MAX;
  27. param.window_h = param.window_w = 3;
  28. param.stride_h = param.stride_w = 2;
  29. param.pad_h = param.pad_w = p;
  30. Checker<Pooling> checker(handle());
  31. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  32. param.mode = Param::Mode::AVERAGE;
  33. param.window_h = param.window_w = 3;
  34. param.stride_h = param.stride_w = 2;
  35. param.pad_h = param.pad_w = p;
  36. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  37. param.mode = Param::Mode::MAX;
  38. param.window_h = param.window_w = 4;
  39. param.stride_h = param.stride_w = 2;
  40. param.pad_h = param.pad_w = p;
  41. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  42. param.mode = Param::Mode::MAX;
  43. param.window_h = param.window_w = 5;
  44. param.stride_h = param.stride_w = 2;
  45. param.pad_h = param.pad_w = p;
  46. if (ih + p * 2 >= 5 && iw + p * 2 >= 5)
  47. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  48. }
  49. }
  50. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_MAX_W3x3_S2x2_NCHW44)
  51. {
  52. // clang-format off
  53. for (size_t ih: {3, 5, 10})
  54. for (size_t iw: {3, 5, 7, 9, 15, 20})
  55. for (size_t ph: {0})
  56. for (size_t pw: {0})
  57. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  58. {
  59. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  60. Checker<Pooling> checker(handle());
  61. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  62. checker.set_rng(0,&rng);
  63. param::Pooling param;
  64. param.mode = param::Pooling::Mode::MAX;
  65. param.format = param::Pooling::Format::NCHW44;
  66. param.pad_h = ph;
  67. param.pad_w = pw;
  68. param.stride_h = param.stride_w = 2;
  69. param.window_h = param.window_w = 3;
  70. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  71. }
  72. // clang-format on
  73. }
  74. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_MAX_W3x3_S1x1_NCHW44)
  75. {
  76. // clang-format off
  77. for (size_t ih: {3, 5, 10})
  78. for (size_t iw: {3, 5, 7, 9, 15, 20})
  79. for (size_t ph: {0})
  80. for (size_t pw: {0})
  81. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  82. {
  83. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  84. Checker<Pooling> checker(handle());
  85. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  86. checker.set_rng(0,&rng);
  87. param::Pooling param;
  88. param.mode = param::Pooling::Mode::MAX;
  89. param.format = param::Pooling::Format::NCHW44;
  90. param.pad_h = ph;
  91. param.pad_w = pw;
  92. param.stride_h = param.stride_w = 1;
  93. param.window_h = param.window_w = 3;
  94. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  95. }
  96. // clang-format on
  97. }
  98. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_INT8_W3x3_S2x2)
  99. {
  100. for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
  101. for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
  102. for (size_t ph: {0, 1, 2})
  103. for (size_t pw: {0, 1, 2})
  104. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  105. {
  106. Checker<Pooling> checker(handle());
  107. checker.set_dtype(0, dtype::Int8());
  108. param::Pooling param;
  109. param.mode = param::Pooling::Mode::MAX;
  110. param.pad_h = ph;
  111. param.pad_w = pw;
  112. param.stride_h = param.stride_w = 2;
  113. param.window_h = param.window_w = 3;
  114. checker.set_param(param).exec(TensorShapeArray{
  115. {2, 3, ih, iw}, {}});
  116. }
  117. }
  118. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_INT8_W2x2_S2x2)
  119. {
  120. for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
  121. for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
  122. for (size_t ph: {0, 1})
  123. for (size_t pw: {0, 1})
  124. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  125. {
  126. Checker<Pooling> checker(handle());
  127. checker.set_dtype(0, dtype::Int8());
  128. param::Pooling param;
  129. param.mode = param::Pooling::Mode::MAX;
  130. param.pad_h = ph;
  131. param.pad_w = pw;
  132. param.stride_h = param.stride_w = 2;
  133. param.window_h = param.window_w = 2;
  134. checker.set_param(param).exec(TensorShapeArray{
  135. {2, 3, ih, iw}, {}});
  136. }
  137. }
  138. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  139. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_FP16) {
  140. Checker<Pooling> checker(handle());
  141. checker.set_dtype(0, dtype::Float16{})
  142. .set_dtype(1, dtype::Float16{})
  143. .set_epsilon(3e-3);
  144. using Param = param::Pooling;
  145. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23})
  146. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23})
  147. for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
  148. for (size_t window : {2, 3}) {
  149. Param param;
  150. param.mode = mode;
  151. param.window_h = param.window_w = window;
  152. param.stride_h = param.stride_w = 1;
  153. param.pad_h = param.pad_w = window / 2;
  154. //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 || FH
  155. //! == 3)
  156. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  157. //! test for SH = SW = 2 && FH = FW = 2
  158. param.stride_h = param.stride_w = 2;
  159. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  160. }
  161. }
  162. //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
  163. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  164. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  165. for (size_t ph : {0, 1, 2})
  166. for (size_t pw : {0, 1, 2})
  167. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  168. param::Pooling param;
  169. param.mode = param::Pooling::Mode::MAX;
  170. param.pad_h = ph;
  171. param.pad_w = pw;
  172. param.stride_h = param.stride_w = 2;
  173. param.window_h = param.window_w = 3;
  174. checker.set_param(param).exec(
  175. TensorShapeArray{{2, 3, ih, iw}, {}});
  176. }
  177. //! test for SH == 2 && SW == 2 && FH = FW = 4 max pooling
  178. for (size_t ih :
  179. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  180. for (size_t iw :
  181. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  182. for (size_t p : {1, 2}) {
  183. Param param;
  184. param.mode = Param::Mode::MAX;
  185. param.window_h = param.window_w = 4;
  186. param.stride_h = param.stride_w = 2;
  187. param.pad_h = param.pad_w = p;
  188. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  189. }
  190. //! test for SH == 2 && SW == 2 && FH = FW = 5 max pooling
  191. for (size_t ih :
  192. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  193. for (size_t iw :
  194. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  195. for (size_t p : {1, 2}) {
  196. Param param;
  197. param.mode = Param::Mode::MAX;
  198. param.window_h = param.window_w = 5;
  199. param.stride_h = param.stride_w = 2;
  200. param.pad_h = param.pad_w = p;
  201. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  202. }
  203. }
  204. #endif
  205. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_QUANTIZED) {
  206. Checker<Pooling> checker(handle());
  207. UniformIntRNG rng1{INT8_MIN >> 1, INT8_MAX >> 1};
  208. UniformIntRNG rng2{0, UINT8_MAX >> 1};
  209. using Param = param::Pooling;
  210. for (auto type : std::vector<DType>{
  211. dtype::QuantizedS8(1.1f),
  212. dtype::Quantized8Asymm(1.1f, static_cast<uint8_t>(3))}) {
  213. if (type.enumv() == DTypeEnum::QuantizedS8) {
  214. checker.set_rng(0, &rng1);
  215. } else {
  216. megdnn_assert(type.enumv() == DTypeEnum::Quantized8Asymm);
  217. checker.set_rng(0, &rng2);
  218. }
  219. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
  220. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
  221. for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
  222. for (size_t window : {2, 3}) {
  223. Param param;
  224. param.mode = mode;
  225. param.window_h = param.window_w = window;
  226. param.stride_h = param.stride_w = 1;
  227. param.pad_h = param.pad_w = window / 2;
  228. //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 ||
  229. //! FH
  230. //! == 3)
  231. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  232. //! test for SH = SW = 2 && FH = FW = 2
  233. param.stride_h = param.stride_w = 2;
  234. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  235. }
  236. }
  237. //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
  238. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  239. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  240. for (size_t ph : {0, 1, 2})
  241. for (size_t pw : {0, 1, 2})
  242. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  243. param::Pooling param;
  244. param.mode = param::Pooling::Mode::MAX;
  245. param.pad_h = ph;
  246. param.pad_w = pw;
  247. param.window_h = param.window_w = 3;
  248. param.stride_h = param.stride_w = 2;
  249. checker.set_param(param).exec(
  250. TensorShapeArray{{2, 3, ih, iw}, {}});
  251. }
  252. //! test for SH == 2 && SW == 2 && FH == FW == 4 max pooling
  253. for (size_t ih :
  254. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  255. for (size_t iw :
  256. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  257. for (size_t p : {1, 2}) {
  258. Param param;
  259. param.mode = Param::Mode::MAX;
  260. param.window_h = param.window_w = 4;
  261. param.stride_h = param.stride_w = 2;
  262. param.pad_h = param.pad_w = p;
  263. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  264. }
  265. //! test for SH == 2 && SW == 2 && FH == FW == 5 max pooling
  266. for (size_t ih :
  267. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  268. for (size_t iw :
  269. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  270. for (size_t p : {1, 2}) {
  271. Param param;
  272. param.mode = Param::Mode::MAX;
  273. param.window_h = param.window_w = 5;
  274. param.stride_h = param.stride_w = 2;
  275. param.pad_h = param.pad_w = p;
  276. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  277. }
  278. }
  279. }
  280. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_FALLBACK) {
  281. using Param = param::Pooling;
  282. for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  283. for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  284. for (size_t p: {1, 2})
  285. {
  286. Param param;
  287. param.mode = Param::Mode::MAX;
  288. param.window_h = param.window_w = 3;
  289. param.stride_h = param.stride_w = 2;
  290. param.pad_h = param.pad_w = p;
  291. Checker<Pooling> checker(handle());
  292. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  293. }
  294. }
  295. #if MEGDNN_WITH_BENCHMARK
  296. namespace {
  297. template <typename Opr>
  298. void benchmark_impl(const typename Opr::Param& param,
  299. std::vector<SmallVector<TensorShape>> shapes, size_t RUNS,
  300. TaskExecutorConfig&& multi_thread_config,
  301. TaskExecutorConfig&& single_thread_config) {
  302. std::vector<float> multi_thread_times, single_thread_times;
  303. {
  304. auto multi_thread_hanle =
  305. create_cpu_handle(0, true, &multi_thread_config);
  306. auto benchmarker = Benchmarker<Opr>(multi_thread_hanle.get());
  307. benchmarker.set_times(RUNS).set_display(false).set_param(param);
  308. for (auto shape : shapes) {
  309. multi_thread_times.push_back(benchmarker.exec(shape) / RUNS);
  310. }
  311. }
  312. {
  313. auto single_thread_handle =
  314. create_cpu_handle(0, true, &single_thread_config);
  315. auto benchmarker = Benchmarker<Opr>(single_thread_handle.get());
  316. benchmarker.set_times(RUNS).set_display(false).set_param(param);
  317. for (auto shape : shapes) {
  318. single_thread_times.push_back(benchmarker.exec(shape) / RUNS);
  319. }
  320. }
  321. printf("Benchmark : Multi threads %zu, ", multi_thread_config.nr_thread);
  322. printf("core_ids:");
  323. for (size_t i = 0; i < multi_thread_config.affinity_core_set.size(); i++) {
  324. printf("%zu ", multi_thread_config.affinity_core_set[i]);
  325. }
  326. printf(", Single thread core_id %zu\n",
  327. single_thread_config.affinity_core_set[0]);
  328. for (size_t i = 0; i < shapes.size(); i++) {
  329. auto shape = shapes[i];
  330. printf("Case: ");
  331. for (auto sh : shape)
  332. printf("%s ", sh.to_string().c_str());
  333. printf("%zu threads time: %f,\n single thread time: "
  334. "%f. spead up = %f, speedup/cores=%f\n",
  335. multi_thread_config.nr_thread, multi_thread_times[i],
  336. single_thread_times[i],
  337. single_thread_times[i] / multi_thread_times[i],
  338. single_thread_times[i] / multi_thread_times[i] /
  339. multi_thread_config.nr_thread);
  340. }
  341. }
  342. } // namespace
  343. TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_POOLING) {
  344. constexpr size_t RUNS = 50;
  345. using Param = param::Pooling;
  346. Param param;
  347. param.window_h = param.window_w = 3;
  348. param.stride_h = param.stride_w = 2;
  349. param.pad_h = param.pad_w = 1;
  350. std::vector<SmallVector<TensorShape>> shapes;
  351. shapes.push_back({{32, 32, 215, 215}, {}});
  352. shapes.push_back({{32, 32, 128, 128}, {}});
  353. shapes.push_back({{8, 256, 100, 100}, {}});
  354. shapes.push_back({{1, 256, 100, 100}, {}});
  355. shapes.push_back({{1, 32, 100, 100}, {}});
  356. shapes.push_back({{1, 256, 80, 80}, {}});
  357. shapes.push_back({{1, 256, 60, 60}, {}});
  358. shapes.push_back({{1, 256, 30, 30}, {}});
  359. param.window_h = param.window_w = 3;
  360. param.stride_h = param.stride_w = 2;
  361. param.pad_h = param.pad_w = 1;
  362. printf("Benchmark POOLING kernel:%d*%d stride:%d,mode %d\n", param.window_h,
  363. param.stride_h, param.pad_h, static_cast<int>(param.mode));
  364. benchmark_impl<Pooling>(param, shapes, RUNS, {4, {0, 1, 2, 3}}, {1, {0}});
  365. benchmark_impl<Pooling>(param, shapes, RUNS, {4, {4, 5, 6, 7}}, {1, {4}});
  366. benchmark_impl<Pooling>(param, shapes, RUNS, {2, {0, 1}}, {1, {0}});
  367. }
  368. #endif
  369. } // namespace test
  370. } // namespace megdnn
  371. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台