You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

pooling.cpp 20 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459
  1. /**
  2. * \file dnn/test/cuda/pooling.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "test/cuda/fixture.h"
  12. #include "megdnn/tensor_iter.h"
  13. #include "test/common/checker.h"
  14. #include "test/common/pooling.h"
  15. #include "src/common/utils.h"
  16. #include "test/cuda/utils.h"
  17. // to check cudnn version
  18. #include <cudnn.h>
  19. #include "test/cuda/benchmark.h"
  20. namespace {
  21. #define V1(v) #v
  22. #define V(v) V1(v)
  23. #define DEF_NAME(NAME) \
  24. #NAME "v" V(CUDNN_MAJOR) "." V(CUDNN_MINOR) "." V(CUDNN_PATCHLEVEL)
  25. } // namespace
  26. namespace megdnn {
  27. namespace test {
  28. TEST_F(CUDA, POOLING_FORWARD) {
  29. auto args = pooling::get_args();
  30. using Format = param::Pooling::Format;
  31. std::vector<DType> dtypes{dtype::Float16(), dtype::BFloat16(), dtype::Float32()};
  32. if (check_compute_capability(6, 0)) {
  33. // int pooling is supported only for Pascal or higher
  34. dtypes.push_back(dtype::Int8());
  35. }
  36. for (auto dtype : dtypes)
  37. for (auto format : {Format::NCHW, Format::NHWC})
  38. for (auto&& arg : args) {
  39. auto param = arg.param;
  40. auto src = arg.ishape;
  41. param.format = format;
  42. if (param.format == Format::NHWC) {
  43. src = cvt_src_or_dst_nchw2nhwc(src);
  44. }
  45. Checker<Pooling> checker(handle_cuda());
  46. if (dtype == dtype::Int8()) {
  47. // different versions of cuDNN differs in rounding behavior;
  48. // setting eps to 1 to allow for rounding errors.
  49. checker.set_epsilon(1 + 1e-3);
  50. } else if (dtype == dtype::BFloat16()) {
  51. checker.set_epsilon(2e-2);
  52. } else {
  53. checker.set_epsilon(1e-2);
  54. }
  55. checker.set_param(param).set_dtype(0, dtype).set_dtype(1, dtype).exec(
  56. TensorShapeArray{src, {}});
  57. }
  58. /* add test for new Mode temporarily */
  59. for (auto dtype : dtypes)
  60. for (auto format : {Format::NCHW, Format::NHWC})
  61. for (auto&& arg : args) {
  62. auto param = arg.param;
  63. if (param.mode == Pooling::Mode::AVERAGE)
  64. param.mode = Pooling::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
  65. else
  66. continue;
  67. auto src = arg.ishape;
  68. param.format = format;
  69. if (param.format == Format::NHWC) {
  70. src = cvt_src_or_dst_nchw2nhwc(src);
  71. }
  72. Checker<Pooling> checker(handle_cuda());
  73. if (dtype == dtype::Int8()) {
  74. // different versions of cuDNN differs in rounding behavior;
  75. // setting eps to 1 to allow for rounding errors.
  76. checker.set_epsilon(1 + 1e-3);
  77. } else if (dtype == dtype::BFloat16()) {
  78. checker.set_epsilon(2e-2);
  79. } else {
  80. checker.set_epsilon(1e-2);
  81. }
  82. checker.set_param(param).set_dtype(0, dtype).set_dtype(1, dtype).exec(
  83. TensorShapeArray{src, {}});
  84. }
  85. }
  86. TEST_F(CUDA, POOLING_BACKWARD) {
  87. auto args = pooling::get_args();
  88. for (auto&& arg : args) {
  89. Checker<PoolingBackward> checker(handle_cuda());
  90. TensorLayout ilayout = TensorLayout(arg.ishape, dtype::Float32());
  91. TensorLayout olayout;
  92. auto constraint = [this, arg](CheckerHelper::TensorValueArray& tensors_orig) {
  93. megdnn_assert(tensors_orig.size() == 4);
  94. auto opr = handle_cuda()->create_operator<PoolingForward>();
  95. opr->param() = arg.param;
  96. auto tensors_cuda_storage = CheckerHelper::alloc_tensors(
  97. handle_cuda(), {tensors_orig[0].layout, tensors_orig[1].layout}, 0);
  98. auto&& tensors_cuda = *tensors_cuda_storage;
  99. auto span = tensors_cuda[0].layout.span();
  100. auto dst = static_cast<dt_byte*>(tensors_cuda[0].raw_ptr) + span.low_byte;
  101. auto src = static_cast<const dt_byte*>(tensors_orig[0].raw_ptr) +
  102. span.low_byte;
  103. megdnn_memcpy_H2D(handle_cuda(), dst, src, span.dist_byte());
  104. auto workspace_size = opr->get_workspace_in_bytes(
  105. tensors_cuda[0].layout, tensors_cuda[1].layout);
  106. auto workspace_cuda = megdnn_malloc(handle_cuda(), workspace_size);
  107. Workspace workspace{static_cast<dt_byte*>(workspace_cuda), workspace_size};
  108. opr->exec(tensors_cuda[0], tensors_cuda[1], workspace);
  109. megdnn_free(handle_cuda(), workspace_cuda);
  110. span = tensors_cuda[1].layout.span();
  111. dst = static_cast<dt_byte*>(tensors_orig[1].raw_ptr) + span.low_byte;
  112. src = static_cast<const dt_byte*>(tensors_cuda[1].raw_ptr) + span.low_byte;
  113. megdnn_memcpy_D2H(handle_cuda(), dst, src, span.dist_byte());
  114. };
  115. {
  116. auto opr = handle_cuda()->create_operator<PoolingForward>();
  117. opr->param() = arg.param;
  118. opr->deduce_layout(ilayout, olayout);
  119. }
  120. auto set_dtype = [&checker](DType dtype) {
  121. checker.set_dtype(0, dtype)
  122. .set_dtype(1, dtype)
  123. .set_dtype(2, dtype)
  124. .set_dtype(3, dtype);
  125. };
  126. checker.set_tensors_constraint(constraint);
  127. set_dtype(dtype::Float32());
  128. checker.set_param(arg.param).exec(
  129. TensorShapeArray{ilayout, olayout, olayout, ilayout});
  130. Float16PeriodicalRNG rng;
  131. set_dtype(dtype::Float16());
  132. checker.set_param(arg.param).set_rng(0, &rng).set_epsilon(1e-2).exec(
  133. TensorShapeArray{ilayout, olayout, olayout, ilayout});
  134. BFloat16PeriodicalRNG bf16_rng;
  135. set_dtype(dtype::BFloat16());
  136. checker.set_param(arg.param)
  137. .set_rng(0, &bf16_rng)
  138. .set_epsilon(1e-2)
  139. .exec(TensorShapeArray{ilayout, olayout, olayout, ilayout});
  140. }
  141. /* add test for new Mode temporarily */
  142. for (auto&& arg : args) {
  143. if (arg.param.mode == Pooling::Mode::AVERAGE)
  144. arg.param.mode = Pooling::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
  145. else
  146. continue;
  147. Checker<PoolingBackward> checker(handle_cuda());
  148. TensorLayout ilayout = TensorLayout(arg.ishape, dtype::Float32());
  149. TensorLayout olayout;
  150. auto constraint = [this, arg](CheckerHelper::TensorValueArray& tensors_orig) {
  151. megdnn_assert(tensors_orig.size() == 4);
  152. auto opr = handle_cuda()->create_operator<PoolingForward>();
  153. opr->param() = arg.param;
  154. auto tensors_cuda_storage = CheckerHelper::alloc_tensors(
  155. handle_cuda(), {tensors_orig[0].layout, tensors_orig[1].layout}, 0);
  156. auto&& tensors_cuda = *tensors_cuda_storage;
  157. auto span = tensors_cuda[0].layout.span();
  158. auto dst = static_cast<dt_byte*>(tensors_cuda[0].raw_ptr) + span.low_byte;
  159. auto src = static_cast<const dt_byte*>(tensors_orig[0].raw_ptr) +
  160. span.low_byte;
  161. megdnn_memcpy_H2D(handle_cuda(), dst, src, span.dist_byte());
  162. auto workspace_size = opr->get_workspace_in_bytes(
  163. tensors_cuda[0].layout, tensors_cuda[1].layout);
  164. auto workspace_cuda = megdnn_malloc(handle_cuda(), workspace_size);
  165. Workspace workspace{static_cast<dt_byte*>(workspace_cuda), workspace_size};
  166. opr->exec(tensors_cuda[0], tensors_cuda[1], workspace);
  167. megdnn_free(handle_cuda(), workspace_cuda);
  168. span = tensors_cuda[1].layout.span();
  169. dst = static_cast<dt_byte*>(tensors_orig[1].raw_ptr) + span.low_byte;
  170. src = static_cast<const dt_byte*>(tensors_cuda[1].raw_ptr) + span.low_byte;
  171. megdnn_memcpy_D2H(handle_cuda(), dst, src, span.dist_byte());
  172. };
  173. {
  174. auto opr = handle_cuda()->create_operator<PoolingForward>();
  175. opr->param() = arg.param;
  176. opr->deduce_layout(ilayout, olayout);
  177. }
  178. auto set_dtype = [&checker](DType dtype) {
  179. checker.set_dtype(0, dtype)
  180. .set_dtype(1, dtype)
  181. .set_dtype(2, dtype)
  182. .set_dtype(3, dtype);
  183. };
  184. checker.set_tensors_constraint(constraint);
  185. set_dtype(dtype::Float32());
  186. checker.set_param(arg.param).exec(
  187. TensorShapeArray{ilayout, olayout, olayout, ilayout});
  188. Float16PeriodicalRNG rng;
  189. set_dtype(dtype::Float16());
  190. checker.set_param(arg.param).set_rng(0, &rng).set_epsilon(1e-2).exec(
  191. TensorShapeArray{ilayout, olayout, olayout, ilayout});
  192. BFloat16PeriodicalRNG bf16_rng;
  193. set_dtype(dtype::BFloat16());
  194. checker.set_param(arg.param)
  195. .set_rng(0, &bf16_rng)
  196. .set_epsilon(1e-2)
  197. .exec(TensorShapeArray{ilayout, olayout, olayout, ilayout});
  198. }
  199. }
  200. TEST_F(CUDA, POOLING_FORWARD_NCHW_Q4) {
  201. require_compute_capability(7, 5);
  202. using Param = param::Pooling;
  203. Checker<Pooling> checker(handle_cuda());
  204. Param param{Param::Mode::MAX, 0, 0, 2, 2, 2, 2};
  205. checker.set_dtype(0, dtype::QuantizedS4(3.1415926f));
  206. param.format = Param::Format::NCHW;
  207. checker.set_param(param).exec({{20, 64, 22, 33}, {}});
  208. param.mode = Param::Mode::AVERAGE;
  209. checker.set_param(param).exec({{20, 96, 22, 33}, {}});
  210. param.mode = Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
  211. checker.set_param(param).exec({{20, 24, 22, 33}, {}});
  212. checker.set_dtype(0, dtype::Quantized4Asymm(3.1415926f, 3));
  213. param.format = Param::Format::NCHW;
  214. checker.set_param(param).exec({{20, 64, 22, 33}, {}});
  215. param.mode = Param::Mode::AVERAGE;
  216. checker.set_param(param).exec({{20, 96, 22, 33}, {}});
  217. param.mode = Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
  218. checker.set_param(param).exec({{20, 24, 22, 33}, {}});
  219. }
  220. TEST_F(CUDA, POOLING_FORWARD_NCHW4_NCHW32) {
  221. require_compute_capability(7, 5);
  222. using Param = param::Pooling;
  223. Checker<Pooling> checker(handle_cuda());
  224. Param param;
  225. checker.set_dtype(0, dtype::QuantizedS8(0.1f));
  226. checker.set_epsilon(1 + 1e-3);
  227. checker.set_before_exec_callback(
  228. AlgoChecker<PoolingForward>(DEF_NAME(cudnnForward)));
  229. for (auto format : {Param::Format::NCHW4, Param::Format::NCHW32}) {
  230. param.format = format;
  231. param.mode = Param::Mode::MAX;
  232. checker.set_param(param).exec({{4, 3, 28, 28, 32}, {}});
  233. param.mode = Param::Mode::AVERAGE;
  234. checker.set_param(param).exec({{4, 3, 28, 28, 64}, {}});
  235. param.mode = Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
  236. checker.set_param(param).exec({{4, 3, 28, 28, 32}, {}});
  237. }
  238. }
  239. #if CUDNN_VERSION >= 7500
  240. TEST_F(CUDA, POOLING_FORWARD_NCHW32) {
  241. require_compute_capability(7, 5);
  242. using Param = param::Pooling;
  243. Checker<Pooling> checker(handle_cuda());
  244. Param param;
  245. auto i8_min = std::numeric_limits<int8_t>().min();
  246. auto i8_max = std::numeric_limits<int8_t>().max();
  247. UniformIntRNG int_rng{i8_min, i8_max};
  248. checker.set_dtype(0, dtype::QuantizedS8(0.1f));
  249. checker.set_before_exec_callback(AlgoChecker<PoolingForward>("CUDA_NCHW32"));
  250. param.format = Param::Format::NCHW32;
  251. checker.set_epsilon(1e-3).set_rng(0, &int_rng);
  252. checker.set_param(param).exec({{64, 8, 28, 28, 32}, {}});
  253. param.mode = Param::Mode::AVERAGE;
  254. checker.set_param(param).exec({{64, 8, 28, 28, 64}, {}});
  255. param.mode = Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
  256. checker.set_param(param).exec({{64, 8, 28, 28, 64}, {}});
  257. }
  258. #endif
  259. TEST_F(CUDA, POOLING_FORWARD_NCHW64_Q4) {
  260. require_compute_capability(7, 5);
  261. using Param = param::Pooling;
  262. Checker<Pooling> checker(handle_cuda());
  263. Param param{Param::Mode::MAX, 1, 1, 2, 2, 2, 2};
  264. UniformIntRNG int_rng{-8, 7};
  265. checker.set_dtype(0, dtype::QuantizedS4(1.f));
  266. param.format = Param::Format::NCHW64;
  267. checker.set_epsilon(1e-3).set_rng(0, &int_rng);
  268. checker.set_param(param).exec({{4, 8, 28, 28, 64}, {}});
  269. param.mode = Param::Mode::AVERAGE;
  270. checker.set_param(param).exec({{4, 8, 28, 28, 64}, {}});
  271. param.mode = Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
  272. checker.set_param(param).exec({{4, 8, 28, 28, 64}, {}});
  273. }
  274. TEST_F(CUDA, POOLING_FORWARD_NCHW64_U4) {
  275. require_compute_capability(7, 5);
  276. using Param = param::Pooling;
  277. Checker<Pooling> checker(handle_cuda());
  278. Param param{Param::Mode::MAX, 1, 1, 2, 2, 2, 2};
  279. UniformIntRNG int_rng{0, 15};
  280. checker.set_dtype(0, dtype::Quantized4Asymm(1.f, 3));
  281. param.format = Param::Format::NCHW64;
  282. checker.set_epsilon(1e-3).set_rng(0, &int_rng);
  283. checker.set_param(param).exec({{4, 8, 28, 28, 64}, {}});
  284. param.mode = Param::Mode::AVERAGE;
  285. checker.set_param(param).exec({{4, 8, 28, 28, 64}, {}});
  286. param.mode = Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
  287. checker.set_param(param).exec({{4, 8, 28, 28, 64}, {}});
  288. }
  289. TEST_F(CUDA, POOLING_FORWARD_NHWC_Q4) {
  290. require_compute_capability(7, 5);
  291. using Param = param::Pooling;
  292. Checker<Pooling> checker(handle_cuda());
  293. Param param{Param::Mode::MAX, 1, 1, 2, 2, 2, 2};
  294. UniformIntRNG int_rng{-8, 7};
  295. checker.set_dtype(0, dtype::QuantizedS4(1.f));
  296. param.format = Param::Format::NHWC;
  297. checker.set_epsilon(1e-3).set_rng(0, &int_rng);
  298. checker.set_param(param).exec({{2, 28, 28, 16}, {}});
  299. checker.set_param(param).exec({{2, 177, 233, 16}, {}});
  300. param.mode = Param::Mode::AVERAGE;
  301. checker.set_param(param).exec({{3, 13, 28, 32}, {}});
  302. param.mode = Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
  303. checker.set_param(param).exec({{4, 29, 28, 64}, {}});
  304. }
  305. TEST_F(CUDA, POOLING_FORWARD_NHWC_U4) {
  306. require_compute_capability(7, 5);
  307. using Param = param::Pooling;
  308. Checker<Pooling> checker(handle_cuda());
  309. Param param{Param::Mode::MAX, 1, 1, 2, 2, 2, 2};
  310. UniformIntRNG int_rng{0, 15};
  311. checker.set_dtype(0, dtype::Quantized4Asymm(1.f, 3));
  312. param.format = Param::Format::NHWC;
  313. checker.set_epsilon(1e-3).set_rng(0, &int_rng);
  314. checker.set_param(param).exec({{2, 28, 28, 16}, {}});
  315. checker.set_param(param).exec({{2, 177, 233, 16}, {}});
  316. param.mode = Param::Mode::AVERAGE;
  317. checker.set_param(param).exec({{3, 13, 28, 32}, {}});
  318. param.mode = Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
  319. checker.set_param(param).exec({{4, 29, 28, 64}, {}});
  320. }
  321. TEST_F(CUDA, POOLING_FORWARD_CHWN4) {
  322. require_compute_capability(6, 1);
  323. using Param = param::Pooling;
  324. Checker<Pooling> checker(handle_cuda());
  325. Param param;
  326. auto i8_min = std::numeric_limits<int8_t>().min();
  327. auto i8_max = std::numeric_limits<int8_t>().max();
  328. UniformIntRNG int_rng{i8_min, i8_max};
  329. checker.set_dtype(0, dtype::QuantizedS8(0.1f));
  330. param.format = Param::Format::CHWN4;
  331. for (auto mode :
  332. {Param::Mode::MAX, Param::Mode::AVERAGE,
  333. Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING}) {
  334. param.mode = mode;
  335. checker.set_epsilon(1e-3).set_rng(0, &int_rng);
  336. checker.set_param(param).exec({{8, 28, 28, 64, 4}, {}});
  337. checker.set_param(param).exec({{8, 28, 28, 15, 4}, {}});
  338. checker.set_param(param).exec({{8, 28, 28, 30, 4}, {}});
  339. }
  340. }
  341. TEST_F(CUDA, POOLING_FORWARD_INT8_NCHW4) {
  342. require_compute_capability(6, 1);
  343. using Param = param::Pooling;
  344. Checker<Pooling> checker(handle_cuda());
  345. Param param;
  346. auto i8_min = std::numeric_limits<int8_t>().min();
  347. auto i8_max = std::numeric_limits<int8_t>().max();
  348. UniformIntRNG int_rng{i8_min, i8_max};
  349. checker.set_dtype(0, dtype::QuantizedS8(0.1f));
  350. param.format = Param::Format::NCHW4;
  351. checker.set_before_exec_callback(AlgoChecker<PoolingForward>("CUDA_NCHW4"));
  352. for (auto mode :
  353. {Param::Mode::MAX, Param::Mode::AVERAGE,
  354. Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING}) {
  355. param.mode = mode;
  356. checker.set_epsilon(1e-3).set_rng(0, &int_rng);
  357. checker.set_param(param).exec({{64, 8, 28, 28, 4}, {}});
  358. checker.set_param(param).exec({{15, 8, 28, 28, 4}, {}});
  359. checker.set_param(param).exec({{30, 8, 28, 28, 4}, {}});
  360. }
  361. }
  362. TEST_F(CUDA, POOLING_FORWARD_INT8_NCHW32) {
  363. require_compute_capability(6, 1);
  364. using Param = param::Pooling;
  365. Checker<Pooling> checker(handle_cuda());
  366. Param param;
  367. auto i8_min = std::numeric_limits<int8_t>().min();
  368. auto i8_max = std::numeric_limits<int8_t>().max();
  369. UniformIntRNG int_rng{i8_min, i8_max};
  370. checker.set_dtype(0, dtype::QuantizedS8(0.1f));
  371. checker.set_before_exec_callback(AlgoChecker<PoolingForward>("CUDA_NCHW32"));
  372. param.format = Param::Format::NCHW32;
  373. for (auto mode :
  374. {Param::Mode::MAX, Param::Mode::AVERAGE,
  375. Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING}) {
  376. param.mode = mode;
  377. checker.set_epsilon(1e-3).set_rng(0, &int_rng);
  378. checker.set_param(param).exec({{64, 8, 28, 28, 32}, {}});
  379. checker.set_param(param).exec({{15, 8, 28, 28, 32}, {}});
  380. checker.set_param(param).exec({{30, 8, 28, 28, 32}, {}});
  381. }
  382. }
  383. #if MEGDNN_WITH_BENCHMARK
  384. TEST_F(CUDA, BENCHMARK_POOLING_CHWN4) {
  385. CUBenchmarker<Pooling> bencher(handle_cuda());
  386. size_t nr_times = 1000;
  387. bencher.set_times(nr_times);
  388. using Param = param::Pooling;
  389. Param param;
  390. auto run_bench = [&](size_t N, size_t C, size_t H, size_t W, size_t stride,
  391. size_t padding, size_t window,
  392. Param::Mode mode = Param::Mode::MAX) {
  393. param.mode = mode;
  394. param.pad_h = param.pad_w = padding;
  395. param.window_h = param.window_w = window;
  396. param.stride_h = param.stride_w = stride;
  397. param.format = Param::Format::NCHW4;
  398. bencher.set_dtype(0, dtype::QuantizedS8{0.1f});
  399. bencher.set_param(param);
  400. auto time_cudnn = bencher.execs({{N, C / 4, H, W, 4}, {}}) / nr_times;
  401. param.format = Param::Format::CHWN4;
  402. bencher.set_param(param);
  403. auto time_chwn4 = bencher.execs({{C / 4, H, W, N, 4}, {}}) / nr_times;
  404. auto time_nchw32 = bencher.execs({{N, C / 32, H, W, 32}, {}}) / nr_times;
  405. size_t oh = infer_conv_shape(H, window, stride, padding),
  406. ow = infer_conv_shape(W, window, stride, padding);
  407. float io = (N * C * H * W + N * C * oh * ow) * sizeof(int8_t);
  408. printf("time(cudnn)=%.2f ms, time(chwn4)=%.2f ms, time(nchw32)=%.2f "
  409. "ms, "
  410. "bandwidth(cudnn)=%.2f Gb/s, bandwidth(chwn4)=%.2f Gb/s, "
  411. "bandwidth(nchw32)=%.2f Gb/s\n",
  412. time_cudnn, time_chwn4, time_nchw32, io / (1e6 * time_cudnn),
  413. io / (1e6 * time_chwn4), io / (1e6 * time_nchw32));
  414. };
  415. run_bench(64, 64, 112, 112, 2, 1, 2);
  416. run_bench(256, 64, 112, 112, 2, 1, 2);
  417. run_bench(64, 64, 112, 112, 2, 1, 2, Param::Mode::AVERAGE);
  418. run_bench(256, 64, 112, 112, 2, 1, 2, Param::Mode::AVERAGE);
  419. run_bench(64, 64, 112, 112, 2, 1, 2, Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING);
  420. run_bench(256, 64, 112, 112, 2, 1, 2, Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING);
  421. }
  422. #endif
  423. } // namespace test
  424. } // namespace megdnn
  425. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台